Skiniotis has ‘outstanding talent,’ ‘technical prowess’
, associate professor of biological chemistry at the University of Michigan Life Sciences Institute and the University of Michigan Medical School, is the co-winner of the 2016 Ʒһɫ for his innovative use of electron microscopy. The award, given every other year, honors outstanding researchers with fewer than 10 years of post-postdoctoral experience.

To initiate intracellular signaling, G-protein–coupled receptors, or GPCRs, on the surface of our cells transmit diverse information, such as hormones, neurotransmitters and light from our environment. Skiniotis pioneered the use of single-particle electron microscopy, or EM, to study GPCRs in complex with their cognate G proteins. These structures were groundbreaking in terms of both the small size of the analyzed proteins and the surprising amount of movement within the receptor-bound G protein.
In her letter nominating Skiniotis for the award, colleague at the University of Michigan said Skiniotis’ “rare combination of outstanding talent in biochemistry and technical prowess with electron microscopy has allowed him to push the boundaries of EM analysis and obtain structural information from molecules and assemblies formerly considered too small for single particle reconstruction.” She added that he has also “fearlessly tackled problems of great biological and chemical importance.”
Skiniotis’ work has important implications for human disease, because understanding the structural mechanism behind GPCRs allows for the development of novel therapies that target these receptors.
During his dissertation work at the European Molecular Biology Laboratory, Skiniotis developed a novel technique for labeling proteins for cryo-EM analysis. He used this technique to study the movement and processivity of the motor protein kinesin. He demonstrated that tubulin is not just a track for kinesin but rather actively modulates kinesin movement.
Most recently, Skiniotis applied his EM expertise to better understand polyketide synthesis by the multidomain polyketide synthases, or PKSs. Polyketides are naturally produced and structurally complex compounds. Many polyketides have antimicrobial, antifungal or immunosuppressant activity, and nearly a third of pharmaceuticals are based on or inspired by polyketides. By understanding the mechanism behind these polyketide factories, it may be possible to bioengineer PKSs to create novel antibiotics.
Skiniotis recently published a stunning series of structures of a PKS module in the journal Nature. In his letter supporting Skiniotis' nomination, at Harvard Medical School, who interacted with Skiniotis when the latter was a postdoctoral fellow at the school, described the series as “triumphs of structural biology.” The structures not only represent the complete enzymatic cycle of a full PKS module for the first time but also detail an unexpected architecture. Unlike the related mammalian fatty acid synthase, the bacterial PKS module forms an arch-shaped dimer that creates a single chamber for the acyl carrier protein to deliver its substrate to the different active sites within the module.
Skiniotis adds the Earl and Thressa Stadtman Scholar Award to an already impressive résumé. He was named a Pew Scholar in Biomedical Sciences in 2011 and received the Presidential Early Career Award for Scientists and Engineers in 2012.
Watch his award lecture, “Molecular choreography of an antibiotic assembly line,” below.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in People
People highlights or most popular articles

In memoriam: Ralph G. Yount
He was a professor emeritus of chemistry and biochemistry at Washington State University and an ASBMB member for 58 years.

From dust to discovery
From makeshift classrooms in Uganda to postdoctoral research in Chicago, MOSAIC scholar Elizabeth Kaweesa builds a legacy in women’s health.

Fliesler wins scientific and ethical awards
He is being honored by the University at Buffalo and the American Oil Chemists' Society for his scientific achievements and ethical integrity.

Hope for a cure hangs on research
Amid drastic proposed cuts to biomedical research, rare disease families like Hailey Adkisson’s fight for survival and hope. Without funding, science can’t “catch up” to help the patients who need it most.

Before we’ve lost what we can’t rebuild: Hope for prion disease
Sonia Vallabh and Eric Minikel, a husband-and-wife team racing to cure prion disease, helped develop ION717, an antisense oligonucleotide treatment now in clinical trials. Their mission is personal — and just getting started.

ASBMB members recognized as Allen investigators
Ileana Cristea, Sarah Cohen, Itay Budin and Christopher Obara are among 14 researchers selected as Allen Distinguished Investigators by the Paul G. Allen Family Foundation.