精品国产一区二区桃色

Annual Meeting

What indirectly links brain disease to COVID-19?

Meet a JBC Herbert Tabor Early Career Investigator Award winner
Jessica Desamero
March 22, 2022

Armin Bayati’s undergraduate years cemented his dual fascination with biology and the brain. 

Bayati earned a bachelor’s degree in biology and psychology with distinction at the University of Victoria in British Columbia, where he worked at a medical sciences lab and started doing electron microscopy, a technique used to capture high-resolution images of a variety of specimens, such as cells and biopsy samples. He became intrigued by cellular functions and structures.

Armin Bayati
Armin Bayati

At the same time, Bayati worked at Saint Joseph’s Hospital as an activity coordinator for patients with a variety of disorders, the most common symptom being dementia. Witnessing the cognitive decline of patients with nervous system disorders got him interested in neuroscience. “A lot of what affects the elderly’s independence is neurological disorders, such as dementia, Alzheimer’s, or movement disorders like Parkinson’s and Huntington’s disease,” he said. “So that’s where my interest in the neurological aspects of things comes in.” 

These experiences led Bayati to study the biological mechanisms behind neurodegenerative disorders at a cellular level. Now a Ph.D. candidate at the Montr茅al Neurological Institute and Hospital at McGill University, he works in , where his research focuses on alpha-synuclein, a neuronal protein linked to Parkinson’s disease and other disorders. He investigates how the pathological form of alpha-synuclein is brought into cells and what type of endocytosis occurs.

Bayati recently has used his expertise in endocytosis to study the virus that causes COVID-19. “We were looking at how pathological alpha-synuclein enters the cell,” he said. “The problem with COVID was the same thing. How does the virus enter the cell? It would be the same kind of experiments as we’d do for looking at the internalization of alpha-synuclein, but then I applied it to finding how the spike protein enters the cell.”

Getting the spike protein into the cell

Understanding mechanisms of SARS-CoV-2 cellular entry is vital, as antiviral strategies targeting early stages of COVID-19 infection can be highly effective. Researchers know that the virus first uses its spike protein to interact with the cell’s surface by binding to the ACE2 receptor on the plasma membrane. Next, SARS-CoV-2 likely is brought into the cell, but it’s unclear how.

In a  in the Journal of Biological Chemistry, researchers at McGill University found that SARS-CoV-2 enters the cell via clathrin-mediated endocytosis, where the scaffold protein clathrin aids in packaging material into vesicles. In this study, purified spike protein and altered lentivirus bearing spike protein were used. The internalization of the spike protein into cells was examined and quantified.

Studies with purified spike showed that spike protein rapidly entered cells expressing ACE2 via endocytosis. When drugs known to block clathrin-mediated endocytosis were introduced, or when the expression of clathrin heavy chain was reduced, the cellular uptake of spike decreased dramatically.

Bayati devised the assay for spike protein uptake, which the team initially had trouble getting to work. Ideally, a fluorescently labeled spike protein would be used, but due to COVID-19 closures and a scarcity of available spike proteins, this wasn’t possible. Bayati thought of using spike protein with a His6 epitope tag on it instead. With this, they were able to follow protein uptake using antibodies.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Jessica Desamero

Jessica Desamero is a graduate of the biochemistry Ph.D. program at the City University of New York Graduate Center. She volunteers with the science outreach organization BioBus, and she is an ASBMB Today volunteer contributor.

Get the latest from ASBMB Today

Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.

Latest in People

People highlights or most popular articles

In memoriam: Ralph G. Yount
In Memoriam

In memoriam: Ralph G. Yount

July 28, 2025

He was a professor emeritus of chemistry and biochemistry at Washington State University and an ASBMB member for 58 years.

From dust to discovery
Profile

From dust to discovery

July 23, 2025

From makeshift classrooms in Uganda to postdoctoral research in Chicago, MOSAIC scholar Elizabeth Kaweesa builds a legacy in women鈥檚 health.

Fliesler wins scientific and ethical awards
Member News

Fliesler wins scientific and ethical awards

July 21, 2025

He is being honored by the University at Buffalo and the American Oil Chemists' Society for his scientific achievements and ethical integrity.

Hope for a cure hangs on research
Essay

Hope for a cure hangs on research

July 17, 2025

Amid drastic proposed cuts to biomedical research, rare disease families like Hailey Adkisson鈥檚 fight for survival and hope. Without funding, science can鈥檛 鈥渃atch up鈥 to help the patients who need it most.

Before we鈥檝e lost what we can鈥檛 rebuild: Hope for prion disease
Feature

Before we鈥檝e lost what we can鈥檛 rebuild: Hope for prion disease

July 15, 2025

Sonia Vallabh and Eric Minikel, a husband-and-wife team racing to cure prion disease, helped develop ION717, an antisense oligonucleotide treatment now in clinical trials. Their mission is personal 鈥 and just getting started.

ASBMB members recognized as Allen investigators
Member News

ASBMB members recognized as Allen investigators

July 14, 2025

Ileana Cristea, Sarah Cohen, Itay Budin and Christopher Obara are among 14 researchers selected as Allen Distinguished Investigators by the Paul G. Allen Family Foundation.