精品国产一区二区桃色

Award

Bollinger built a bioinorganic powerhouse at Penn State

He has won the ASBMB鈥檚 William C. Rose Award
Laurel Oldach
Dec. 10, 2021

Factories apply high heat and tremendous pressure to turn atmospheric nitrogen into ammonia — something bacteria do every day at ambient temperatures in the dirt, powering the global nitrogen cycle.

Bollinger-Martin-445x463.jpg
Martin Bollinger

Martin Bollinger doesn’t work on the nitrogen cycle. But he does use it to explain to undergraduates the tremendous power of redox metalloenzymes, such as the ones nitrogen-fixing microbes use. He, too, seems to favor an environment that gets things done with less heat and pressure than commonly are considered necessary.

His joint group with Carsten Krebs in the journal Science the mechanism a microbial enzyme uses to make ethylene, a two-carbon molecule used as a building block in numerous industrial syntheses, which currently is produced from natural gas or petroleum.

“It’s the coolest mechanism I’ve ever been involved in working out,” Bollinger said, then paused to add that he had no hand in the experiments — it was all the work of student Rachelle Copeland, with an assist from postdoc Shengbin Zhou. “That was a great mentoring story,” Bollinger said, “because all we did was get out of her way.”

Talk to him long enough and you’ll notice this is a habit: Bollinger always mentions not just the experimental work done in his laboratory but the name of the trainee or colleague who did it.

Bollinger is the recipient of the 精品国产一区二区桃色’s 2022 William C. Rose Award, which recognizes outstanding research contributions and a demonstrated commitment to mentoring. Colleague Squire Booker nominated Bollinger for the Rose Award. “Marty has been an incredible mentor to students and postdocs, and particularly women and women of color,” Booker noted.

Bollinger founded a bioinorganic chemistry research group at Pennsylvania State University. According to Booker who was the second member of the group, Bollinger has been key in lobbying university administration on its behalf.

Colleague Joseph Cotruvo Jr. wrote in a recommendation letter, “Marty has been the guiding force in turning Penn State into a powerhouse in bioinorganic chemistry — the best place in the country, and probably the world, to do research in this field.”

Contributing to a tight-knit group of researchers and its collaborative culture, Bollinger said, is one of his proudest accomplishments. “I’m sure it’s not completely unique, but it’s very, very rare. … It comes from a common mindset where it’s not all about me; it’s about everyone succeeding, and keeping your ego in check, and promoting younger people.”

After receiving the Rose Award, Bollinger said, he spent some time reading up on its namesake, William C. Rose. He was taken with Rose conducted to determine which amino acids are essential. Many of these studies involved feeding young men, mostly recruited from Rose’s own students, foul-tasting chemically defined mixtures lacking certain amino acids to determine which were essential for human biology. Rose monitored the students’ nitrogen balance and their self-reported energy levels. After establishing that there are nine amino acids that humans cannot synthesize and must extract from the diet, Rose joined dietary recommendation panels, disseminating the knowledge in public health contexts.

“Reading about this work in the last few days, I fondly recalled conversations with my late first wife, Wendy, who studied human nutrition when we met as undergraduates at Penn State,” Bollinger said. “Some of our earliest talks were about complementing proteins in vegetarian and vegan diets. That is directly from Will Rose’s work.

“You think of how esoteric some of my work — and just science in general — can be these days,” he said. “To remember back to that kind of fundamentally important-to-society work is a thrill.”

Multiple activities from a pared-down source

Among other metalloproteins, Bollinger’s research group studies mononuclear nonheme iron oxygenases, enzymes that depend on one iron ion that is not coordinated by a porphyrin. Enzymes in this class can add hydroxyl groups, convert single bonds to double bonds, create or expand rings, or generate special functional groups such as endoperoxides or isonitriles — and sometimes do more than one of these transformations, depending on which substrate they are presented.

“The overarching goal has been to understand how you can, from essentially one structural scaffold and a simple cofactor and co-substrate, elicit these multiple activities,” Bollinger said of his work.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Laurel Oldach

Laurel Oldach is a former science writer for the ASBMB.

Get the latest from ASBMB Today

Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.

Latest in People

People highlights or most popular articles

In memoriam: Ralph G. Yount
In Memoriam

In memoriam: Ralph G. Yount

July 28, 2025

He was a professor emeritus of chemistry and biochemistry at Washington State University and an ASBMB member for 58 years.

From dust to discovery
Profile

From dust to discovery

July 23, 2025

From makeshift classrooms in Uganda to postdoctoral research in Chicago, MOSAIC scholar Elizabeth Kaweesa builds a legacy in women鈥檚 health.

Fliesler wins scientific and ethical awards
Member News

Fliesler wins scientific and ethical awards

July 21, 2025

He is being honored by the University at Buffalo and the American Oil Chemists' Society for his scientific achievements and ethical integrity.

Hope for a cure hangs on research
Essay

Hope for a cure hangs on research

July 17, 2025

Amid drastic proposed cuts to biomedical research, rare disease families like Hailey Adkisson鈥檚 fight for survival and hope. Without funding, science can鈥檛 鈥渃atch up鈥 to help the patients who need it most.

Before we鈥檝e lost what we can鈥檛 rebuild: Hope for prion disease
Feature

Before we鈥檝e lost what we can鈥檛 rebuild: Hope for prion disease

July 15, 2025

Sonia Vallabh and Eric Minikel, a husband-and-wife team racing to cure prion disease, helped develop ION717, an antisense oligonucleotide treatment now in clinical trials. Their mission is personal 鈥 and just getting started.

ASBMB members recognized as Allen investigators
Member News

ASBMB members recognized as Allen investigators

July 14, 2025

Ileana Cristea, Sarah Cohen, Itay Budin and Christopher Obara are among 14 researchers selected as Allen Distinguished Investigators by the Paul G. Allen Family Foundation.