¾«Æ·¹ú²úÒ»Çø¶þÇøÌÒÉ«

Journal News

JBC: Sugary secrets
of a cancer-related protein

Sasha Mushegian
Feb. 1, 2018

The proteins in human cells are extensively decorated with different types of sugars, a phenomenon called glycosylation. These modifications greatly increase the diversity of protein structure and function, affecting how proteins fold, how they behave, and where they go in cells. published in the Journal of Biological Chemistry demonstrates that a rare type of glycosylation profoundly affects the function of a protein that is important for human development and cancer progression.

Sugars fill the “notches” in the Notch receptor. The glycan stabilizes the Notch EGF repeats and thereby regulates Notch trafficking in cells.courtesy of Robert Haltiwanger, University of Georgia

Protein glycosylation is either called N-linked or O-linked, depending on whether the sugar is attached to nitrogen- or oxygen-containing sites, respectively. O-linked modifications typically involve the sugar N-acetylgalactosamine being attached to the amino acids serine or threonine, called “mucin-type” glycosylation because they are commonly found in proteins in mucus membranes; together with N-linked sugars, these “canonical” modifications modify thousands of types of proteins.

For over 20 years, research group, now at the , has studied a rarer type of O-linked modification: attachment of the sugars glucose or fucose to serine or threonine, a modification that affects just a few hundred types of proteins. One of these proteins is Notch, a signaling receptor that is essential for cell development and differentiation and is dysregulated in cancers such as leukemia, breast cancer, and prostate cancer.

“The fact that we found these sugars on Notch was intriguing because Notch is a very important molecule,” Haltiwanger said. “So we’ve been curious about how these sugars affect [Notch’s] stability and activity.”

The enzymes responsible for modifying Notch with glucose and fucose are called POFUT1 and POGLUT1. Haltiwanger’s team, led by , wanted to know exactly why POFUT1 and POGLUT1 were attaching glucose and fucose to Notch in cells.

If you genetically engineer a fly or mouse without POFUT1 or POGLUT1, Haltiwanger said, “you get a dead fly or a dead mouse. You completely disrupt the Notch pathway; Notch is not functional if you don’t add those sugars. There’s been a lot of work over the years on: Why is that? What is [the sugar] doing?”

Haltiwanger’s new work shows that the fucose and glucose modifications serve as quality-control markers that allow Notch to be transported to its final destination in the cell membrane. When the researchers knocked out POFUT1 or POGLUT1 in cell cultures using CRISPR/Cas technology, cells displayed much less Notch on the cell surface. When both enzymes were knocked out, Notch was almost completely absent. Using additional biochemical methods, the researchers found that POFUT1 and POGLUT1 attached glucose and fucose to portions of Notch only after they fold in a specific way.

“It’s like a stamp of approval,” Haltiwanger said. “This part’s folded? Boom, you put a fucose on it. And somehow that tells the cell: Don’t mess with this anymore. Leave it alone. If you don’t add the sugar, [the Notch proteins] get stuck inside the endoplasmic reticulum, get degraded, and don’t get secreted.”

Knowing that these sugars are essential for Notch activity makes the enzymes that control them, POFUT1 and POGLUT1, potential targets for cancer treatments. Depending on whether Notch is overactive or insufficiently active in a particular cancer, manipulating the sugars that are added to Notch could help correct the dysregulation. Haltiwanger’s team is working on finding chemical compounds that would inhibit POFUT1 and POGLUT1, thus stopping Notch from embedding in the cell membrane and carrying out its signaling functions. They’re also attempting to unravel how the glucose and fucose modifications work together to fine-tune Notch activity.

“That’ll keep us busy,” Haltiwanger said.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Sasha Mushegian

Sasha Mushegian is a postdoctoral fellow at Georgetown University. Follow her on Twitter.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Parsing plant pigment pathways
Webinar

Parsing plant pigment pathways

June 13, 2025

Erich Grotewold of Michigan State University, an ASBMB Breakthroughs speaker, discusses his work on the genetic regulation of flavonoid biosynthesis.

Calcium channel linked to cancer drug resistance
Journal News

Calcium channel linked to cancer drug resistance

June 12, 2025

Researchers discover a protein associated with carboplatin-resistant retinoblastoma, suggesting this protein could be a promising therapeutic target. Read more about this recent Journal of Biological Chemistry paper.

Host fatty acids enhance dengue virus infectivity
Journal News

Host fatty acids enhance dengue virus infectivity

June 12, 2025

Researchers in Germany find that viral replication depends on host enzymes that synthesize lipids, revealing potential metabolic targets for antiviral intervention. Read more about this recent Journal of Biological Chemistry paper.

Antibodies inhibit hyperactive protein disposal
Journal News

Antibodies inhibit hyperactive protein disposal

June 12, 2025

Researchers at the University of California, San Francisco, identify an enzyme inhibitor, offering new tools to study diseases like cystic fibrosis, neurodegeneration and cancer. Read more about this recent Journal of Biological Chemistry paper.

Scientists find unexpected correlation between age and HDL-C levels
Journal News

Scientists find unexpected correlation between age and HDL-C levels

June 3, 2025

In a 30-year multicenter study, researchers determined what factors predict HDL-C concentration. In their analysis, they found that HDL-C levels grew with increasing age and physical activity.

Butter, olive oil, coconut oil — what to choose?
Journal News

Butter, olive oil, coconut oil — what to choose?

May 28, 2025

Depending on the chain length and origin of the fat, regular fat consumption changes the specific makeup of fats in bloodstream and affect mild to severe cholesterol patterns. Read about this recent Journal of Lipid Research study.