¾«Æ·¹ú²úÒ»Çø¶þÇøÌÒÉ«

Journal News

Quantifying bacteria-borne bile
that may cause metabolic disease

John Arnst
Feb. 4, 2020

Beyond breaking down food, the steroid bile acids produced both by our livers and by our intestinal inhabitants have a range of functions, from helping absorb lipids and fat-soluble vitamins to acting as signaling molecules for myriad pathways.

Liver-woodcut-JLR-BILE-445x727.jpg
WELLCOME COLLECTION
The liver, pictured here in a Chinese woodcut from the Ming period, is responsible
for the production of primary bile acids.

When gut microbes use amino acids to conjugate metabolites or primary bile acids created by the liver, secondary bile acids are formed. These secondary acids are linked to an increased risk of metabolic diseases, but their physiochemical properties make it difficult to puzzle out which bile acids are being produced by which gut bacteria. To rectify this, researchers in ’s laboratory at the Cleveland Clinic’s Center for Microbiome and Human Health have developed a new stable isotope dilution liquid chromatography-tandem mass spectrometry method to quantify bile acids in mice and humans. They in the Journal of Lipid Research.

Ima Nemet is a senior scientist in Hazen’s lab and the corresponding author on the paper. “We know that so many bile acids have been known and studied for a long time, but we wanted to have some very robust methods that can be very easily used for large clinical studies,” Nemet said. “When we run these large cohorts, we use multiple instruments that are sometimes even from different vendors. So we wanted to have something that’s ‘clickable’ on all different types of machines.”

Eating foods containing high amounts of choline, notably red meat, spurs gut bacteria to produce the bile acid trimethylamine N-oxide, or TMAO, Hazen and colleagues . TMAO can cause plaque to accumulate in arteries and is a predictor of heart attacks. They that TMAO derived from dietary sources of choline was elevated in cases of chronic kidney diseases.

To validate their new analytical method, a bile acid panel, the researchers examined circulating levels of more than 50 primary and secondary bile acids in serum and fecal samples from mice and humans. They used the panel to identify a handful of circulating bile acids associated with diabetes in samples obtained from a study of people with Type 2 diabetes.

Nemet was intrigued to find that bacteria played a role in regulating the production of a number of primary bile acids that were thought to be produced exclusively by the liver.

“The circulating levels of three primary bile acids are completely dependent on microbial activity,” she said. “That’s really interesting for me, because usually people say primary bile acids are host-derived, but … if we put humans or mice on antibiotics, these levels go down. That means the majority of these bile acids are coming from microbial contribution, even though we’re calling them primary.”

Nemet and Hazen plan to use the bile panel to test samples from larger clinical studies before homing in on the specific mechanisms by which bile acids increase the risk of Type 2 diabetes, which potentially could be disrupted by small-molecule drugs.

“This is our start in looking into the contribution of bile acids in developing metabolic diseases,” Nemet said. “There are now a plethora of experiments where we can now look and see whether these metabolites are just associations or whether they are driving Type 2 diabetes.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
John Arnst

John Arnst was a science writer for ASBMB Today.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Parsing plant pigment pathways
Webinar

Parsing plant pigment pathways

June 13, 2025

Erich Grotewold of Michigan State University, an ASBMB Breakthroughs speaker, discusses his work on the genetic regulation of flavonoid biosynthesis.

Calcium channel linked to cancer drug resistance
Journal News

Calcium channel linked to cancer drug resistance

June 12, 2025

Researchers discover a protein associated with carboplatin-resistant retinoblastoma, suggesting this protein could be a promising therapeutic target. Read more about this recent Journal of Biological Chemistry paper.

Host fatty acids enhance dengue virus infectivity
Journal News

Host fatty acids enhance dengue virus infectivity

June 12, 2025

Researchers in Germany find that viral replication depends on host enzymes that synthesize lipids, revealing potential metabolic targets for antiviral intervention. Read more about this recent Journal of Biological Chemistry paper.

Antibodies inhibit hyperactive protein disposal
Journal News

Antibodies inhibit hyperactive protein disposal

June 12, 2025

Researchers at the University of California, San Francisco, identify an enzyme inhibitor, offering new tools to study diseases like cystic fibrosis, neurodegeneration and cancer. Read more about this recent Journal of Biological Chemistry paper.

Scientists find unexpected correlation between age and HDL-C levels
Journal News

Scientists find unexpected correlation between age and HDL-C levels

June 3, 2025

In a 30-year multicenter study, researchers determined what factors predict HDL-C concentration. In their analysis, they found that HDL-C levels grew with increasing age and physical activity.

Butter, olive oil, coconut oil — what to choose?
Journal News

Butter, olive oil, coconut oil — what to choose?

May 28, 2025

Depending on the chain length and origin of the fat, regular fat consumption changes the specific makeup of fats in bloodstream and affect mild to severe cholesterol patterns. Read about this recent Journal of Lipid Research study.