精品国产一区二区桃色

News

Breaking down fat byproducts could lead to healthier aging

Eyleen Jorgelina O鈥橰ourke
By Eyleen Jorgelina O鈥橰ourke
March 17, 2024

The journey of aging brings with it an unavoidable reality for many: an increased accumulation of body fat. Though much of society seems mostly focused on the aesthetics of being overweight, doctors look past any cosmetic concerns to focus on the health implications of fat byproducts in the body.

are one of the molecular building blocks that make up fats. Though essential for various bodily functions, excessive amounts of fatty acids in the body , shortening a person’s by increasing their risk of chronic disease, disrupting metabolic processes and promoting inflammation.

Fatty acids are during medical examinations, such as blood tests measuring your lipid profile. But clinicians and researchers often overlook the other key component of fat despite its potentially harmful effects: , a compound that links fatty acids to make a fat molecule.

Both of these fat byproducts disrupt cellular and organ function, mirroring the effects of aging. In fact, researchers are increasingly seeing obesity as a .

The role that fats play in aging is one of the focuses of my work as a . My and I wondered whether reducing harmful fat byproducts might help slow the aging process and consequently stave off common diseases.

Fats perform essential functions in your cells, but not all of them are good for you.

Breaking down fat byproducts

In studying ways to extend the life span and improving the health at late age of lab animals, my colleagues and I saw a : All the anti-aging interventions we tested led to reduced glycerol levels.

For instance, when placed on a calorie-restricted diet, the nematode Caenorhabditis elegans . We found that the glycerol levels in the body of these long-lived worms were lower than in shorter-lived worms that were not food restricted. Calorie restriction also responsible for breaking down glycerol, ADH-1, in their intestine and muscles.

We saw similar undergoing dietary restriction or treated with an anti-aging drug called rapamycin. This finding suggests there may be a common mechanism underlying healthy aging across species, with ADH-1 at its core.

,
Triacylglycerols, also known as triglycerides, are composed of a glycerol linked to three fatty acids.

We hypothesized that elevated ADH-1 activity promotes health in old age by decreasing harmful levels of glycerol. Supporting this hypothesis were . First, we found that adding glycerol to the diet of worms . By contrast, animals genetically modified to boost levels of the glycerol-busting enzyme ADH-1 had low glycerol levels and remained lean and healthy with longer lives, even on unrestricted diets.

The simple molecular structure and wealth of research on ADH-1 make it an attractive target for developing drugs that boost its activity. My lab’s long-term goal is to explore how compounds that activate ADH-1 affect the health and longevity of both mice and people.

A long-lived society

Anti-aging research generates both excitement and debate. On the one hand, the benefits of are clear. On the other hand, extending life span through healthier aging will likely introduce new societal challenges.

If life spans extending to 120 years become the norm, , including retirement ages and economic models, will need to evolve to accommodate an aging population. Legal and social frameworks regarding the elderly and family care may need revision. The , those with children and living parents and grandparents, might find themselves caring for even more generations simultaneously. Longer lives will require society to rethink and reshape how we integrate and support an increasingly older population in our communities.

Whether through ADH-1 or dietary adjustments, the quest for the solution to healthy aging is not just a medical journey but a societal one.The Conversation

This article is republished from under a Creative Commons license. Read the .

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Eyleen Jorgelina O鈥橰ourke
Eyleen Jorgelina O鈥橰ourke

Eyleen Jorgelina O鈥橰ourke is an associate professor of biology and cell biology at the University of Virginia.

Get the latest from ASBMB Today

Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Understanding the roles of extracellular matrix and vesicles in valvular disease
Profile

Understanding the roles of extracellular matrix and vesicles in valvular disease

Oct. 30, 2025

MOSAIC scholar Cassandra Clift uses mass spectrometry and multiomics to study cardiovascular calcification and collagen dysregulation, bridging her background in bioengineering and biology to investigate extracellular vesicles and heart disease.

Lipid profiles reveal sex differences in type 2 diabetes
Journal News

Lipid profiles reveal sex differences in type 2 diabetes

Oct. 29, 2025

Researchers explored the lipid profiles of individuals with type 2 diabetes and identified potentially useful lipid biomarkers for this condition.

Serum lipids may predict early diabetes risk
Journal News

Serum lipids may predict early diabetes risk

Oct. 29, 2025

Researchers found that levels of two key fatty acids may predict worsening tolerance for glucose, independent of body fat and insulin levels. In turn, these fatty acids may serve as early T2D biomarkers.

Sex and diet shape fat tissue lipid profiles in obesity
Journal News

Sex and diet shape fat tissue lipid profiles in obesity

Oct. 29, 2025

Researchers found that sex hormone levels and diet both influence inflammation and lipid composition in obesity.

Mapping the placenta鈥檚 hormone network
Journal News

Mapping the placenta鈥檚 hormone network

Oct. 21, 2025

Study uncovers how the placenta actively metabolizes not only glucocorticoids but also novel androgens and progesterones, reshaping our understanding of pregnancy and its complications.

Biochemists and molecular biologists sweep major 2025 honors
News

Biochemists and molecular biologists sweep major 2025 honors

Oct. 20, 2025

Recent Nobel, MacArthur and Kimberly Prize honorees highlight the power of biochemistry and molecular biology to drive discovery, including immune tolerance, vaccine design and metabolic disease, and to advance medicine and improve human health.