From the journals: 精品国产一区二区桃色
A risk factor for autoimmune thyroid diseases, phenotypic adaptation in the agent that causes burn infections and a new insight on a cell cycle protein. We offer summaries of papers on these topics recently published in the journal Molecular & Cellular Proteomics.
Identification of another risk factor for AITDs
Autoimmune thyroid diseases, or AITDs, are caused by a self-mediated attack on thyroid cells and ultimately affect thyroid gland function. Two common AITDs are Hashmito’s thyroiditis, or HT, and Graves’ disease. Before clinical symptoms appear, the human body produces autoantibodies against the thyroid cells, which allows clinicians to detect these illnesses. Researchers hypothesize that thyroid peroxidase antibody, or TPOab, a commonly used diagnostic marker, has a role in autoimmunity by modulating IgG glycosylation.
Recently, Tiphaine C. Martin of King’s College and an international team published in the journal Molecular & Cellular Proteomics that focused on determining whether immunoglobulin G, or IgG, glycosylation is associated with TPOAb that is positive for AITD and whether AITD and glycan structures share any genetic, heritable factors.
In this study, the researchers found that TPOAb level and AITD are associated with decreased IgG core fucosylation. Additionally, they showed that HT is linked to a decrease of antennary alpha1,2 fucose and that enrichment of IgG N-glycan traits is associated with genes FUT8 and IKZF1, which are essential for IgG core fucose formation. The researchers could not determine genetic variances between AITD and IgG N-glycan traits; however, they showed that decreased core fucosylation and antennary alpha1,2 fucose are not associated with gene expression alteration in peripheral blood mononuclear cells.
In conclusion, the researchers propose a model in which FUT8 and IKZF1 have an aberrant expression in a tissue-specific manner instead of in the blood. They think this model will show that the altered expression causes antibody-dependent cell-mediated cytotoxicity directed against the thyrocyte due to afucosylated TPOAb antibodies. In turn, they propose that this cytoxicity leads to AITD development.
How a pathogen adapts to survive
Pseudomonas aeruginosa, a Gram-negative opportunistic pathogen, causes burn wound infections and pneumonia. It produces siderophores to acquire iron for survival and can express various iron-uptake pathways with specific TonB-dependent transporters, or TBDTs, which allows itto use exosiderophores produced by other bacterial species.
Quentin Perraud of the University of Strasbourg and a team of researchers in France recently published in the journal Molecular & Cellular Proteomics focused on understanding how P. aeruginosa selects, regulates and adapts its expression levels of iron-uptake pathways in response to environmental stimuli. In this study, the researchers showed that P. aeruginosa uses different siderophores at different chelating efficiencies, with catechol siderophores being the most powerful. They also showed that expression of the TBDTs varied when P. aeruginosa was grown in three different media, which suggests that different phenotypic patterns exist. This work also shows that P. aeruginosa can detect the presence of epithelial cells and adjust gene expression accordingly. These findings show that P. aeruginosasenses changes in its environment and alters the expression of its various iron pathways to acquire iron and effectively compete with other bacterial species.
An essential protein in the cell cycle
Each day, millions of cells undergo cell division to make daughter cells. This extensively studied cell cycle consists of four phases: a gap phase, synthesis, a second gap and mitosis. Each checkpoint in this cycle is crucial, because any irregularities can lead to uncontrollable cell growth, also known as cancer.
by Patrick Herr of Karolinska Insitutet and a team in Sweden, published in the journal Molecular & Cellular Proteomics, focused on dissecting cell cycle dynamics at the protein level in asynchronous cells, using methods other than chemical synchronization. The researchers characterized protein oscillation patterns over the course of the cell cycle and found that many vital processes are affected. The team detected differences in mRNA abundance and phosphorylation patterns among cell cycle phase groups. They characterized predicted cell cycle–dependent proteins, including S-adenosylmethionine synthase, or MAT2A. They found that MAT2A nuclear localization was enriched in synthesis and in the second gap and mitosis, and they speculate that this protein is essential for epigenetic histone methylation during DNA replication.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Understanding the roles of extracellular matrix and vesicles in valvular disease
MOSAIC scholar Cassandra Clift uses mass spectrometry and multiomics to study cardiovascular calcification and collagen dysregulation, bridging her background in bioengineering and biology to investigate extracellular vesicles and heart disease.

Lipid profiles reveal sex differences in type 2 diabetes
Researchers explored the lipid profiles of individuals with type 2 diabetes and identified potentially useful lipid biomarkers for this condition.

Serum lipids may predict early diabetes risk
Researchers found that levels of two key fatty acids may predict worsening tolerance for glucose, independent of body fat and insulin levels. In turn, these fatty acids may serve as early T2D biomarkers.

Sex and diet shape fat tissue lipid profiles in obesity
Researchers found that sex hormone levels and diet both influence inflammation and lipid composition in obesity.

Mapping the placenta鈥檚 hormone network
Study uncovers how the placenta actively metabolizes not only glucocorticoids but also novel androgens and progesterones, reshaping our understanding of pregnancy and its complications.

Biochemists and molecular biologists sweep major 2025 honors
Recent Nobel, MacArthur and Kimberly Prize honorees highlight the power of biochemistry and molecular biology to drive discovery, including immune tolerance, vaccine design and metabolic disease, and to advance medicine and improve human health.