精品国产一区二区桃色

Journal News

Small protein plays a big role in viral battles

Anna Crysler
April 30, 2024

Extracellular vesicles, or EVs, play an important role in communication among cells. Almost all cells can release EVs, which carry content that varies according to the cell type. In response to viruses, immune cells will release EVs containing information that can help the body fight viral replication and infection. But what happens when a complex pathogen hijacks this system?

HIV accessory protein negative regulatory factor
Boghog/Wikimedia Commons
The HIV accessory protein negative regulatory factor, illustrated here, allows easier viral replication and spread in host cells.

Luis daSilva’s research group at the University of S茫o Paulo in Ribeir茫o Preto studies the endomembrane system of cells with particular interest in the molecular mechanisms of human immunodeficiency virus, or HIV. Viruses can take advantage of this system and impair the immune system’s ability to prevent infection. Researchers have thoroughly studied and characterized HIV’s specific proteins, and they recognize HIV accessory proteins as important virulence factors for HIV-1 pathogenesis.

In in Molecular and Cellular Proteomics, the daSilva group writes about their work studying the HIV accessory protein negative regulatory factor, or Nef, in the context of EVs. Nef allows easier viral replication and spread in host cells, and it also modifies the host’s EVs. The authors investigated the impact of this manipulation by Nef through a proteomic analysis of EVs derived from lymphocytes known as T cells.

Mara Elisama da Silva Janu谩rio is the first author of the paper. “Our study unveils the influence of Nef on the protein content of EVs released from T lymphocytes, cells that play a major role in the body’s defense,” she said. “Our recent findings highlight Nef as a global modulator of EV proteome.”

Specifically, Nef downregulates proteins in EVs that are important in the body’s antiviral response to HIV-1, including interferon-induced transmembrane proteins, or IFITMs. When IFITMs are reduced in EVs, key antiviral activities are mitigated. These proteins are among several whose expression is disrupted by Nef in HIV-1 infection. 

The researchers found that Nef could modify the levels of more than 35% of the proteins identified in EVs, and among the decreased proteins were three members of the IFITM family. These proteins are pivotal in the body’s antiviral response against viruses including Zika, dengue, influenza and HIV. 

“By decoding these intricate cellular dialogues, our work contributes a small but significant piece to the broader narrative of scientific discovery surrounding HIV-1 infection, offering potential avenues for advancements in medical interventions,” da Silva Janu谩rio said.

Unraveling the biological significance of altered proteins in EVs in relation to viral infection and replication are important next steps, she said. “We anticipate that further exploration in this direction will provide valuable insights for the field, shedding light on the intricate processes influenced by Nef and contributing to a deeper understanding of the broader implications for viral dynamics.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Anna Crysler

Anna Crysler holds a B.A. in biochemistry from Albion College and is a is a Ph.D. student in bioengineering at the University of Pennsylvania. She is an ASBMB Today volunteer contributor.

Get the latest from ASBMB Today

Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Understanding the roles of extracellular matrix and vesicles in valvular disease
Profile

Understanding the roles of extracellular matrix and vesicles in valvular disease

Oct. 30, 2025

MOSAIC scholar Cassandra Clift uses mass spectrometry and multiomics to study cardiovascular calcification and collagen dysregulation, bridging her background in bioengineering and biology to investigate extracellular vesicles and heart disease.

Lipid profiles reveal sex differences in type 2 diabetes
Journal News

Lipid profiles reveal sex differences in type 2 diabetes

Oct. 29, 2025

Researchers explored the lipid profiles of individuals with type 2 diabetes and identified potentially useful lipid biomarkers for this condition.

Serum lipids may predict early diabetes risk
Journal News

Serum lipids may predict early diabetes risk

Oct. 29, 2025

Researchers found that levels of two key fatty acids may predict worsening tolerance for glucose, independent of body fat and insulin levels. In turn, these fatty acids may serve as early T2D biomarkers.

Sex and diet shape fat tissue lipid profiles in obesity
Journal News

Sex and diet shape fat tissue lipid profiles in obesity

Oct. 29, 2025

Researchers found that sex hormone levels and diet both influence inflammation and lipid composition in obesity.

Mapping the placenta鈥檚 hormone network
Journal News

Mapping the placenta鈥檚 hormone network

Oct. 21, 2025

Study uncovers how the placenta actively metabolizes not only glucocorticoids but also novel androgens and progesterones, reshaping our understanding of pregnancy and its complications.

Biochemists and molecular biologists sweep major 2025 honors
News

Biochemists and molecular biologists sweep major 2025 honors

Oct. 20, 2025

Recent Nobel, MacArthur and Kimberly Prize honorees highlight the power of biochemistry and molecular biology to drive discovery, including immune tolerance, vaccine design and metabolic disease, and to advance medicine and improve human health.