Small protein plays a big role in viral battles
Extracellular vesicles, or EVs, play an important role in communication among cells. Almost all cells can release EVs, which carry content that varies according to the cell type. In response to viruses, immune cells will release EVs containing information that can help the body fight viral replication and infection. But what happens when a complex pathogen hijacks this system?

Luis daSilva’s research group at the University of São Paulo in Ribeirão Preto studies the endomembrane system of cells with particular interest in the molecular mechanisms of human immunodeficiency virus, or HIV. Viruses can take advantage of this system and impair the immune system’s ability to prevent infection. Researchers have thoroughly studied and characterized HIV’s specific proteins, and they recognize HIV accessory proteins as important virulence factors for HIV-1 pathogenesis.
In in Molecular and Cellular Proteomics, the daSilva group writes about their work studying the HIV accessory protein negative regulatory factor, or Nef, in the context of EVs. Nef allows easier viral replication and spread in host cells, and it also modifies the host’s EVs. The authors investigated the impact of this manipulation by Nef through a proteomic analysis of EVs derived from lymphocytes known as T cells.
Mara Elisama da Silva Januário is the first author of the paper. “Our study unveils the influence of Nef on the protein content of EVs released from T lymphocytes, cells that play a major role in the body’s defense,” she said. “Our recent findings highlight Nef as a global modulator of EV proteome.”
Specifically, Nef downregulates proteins in EVs that are important in the body’s antiviral response to HIV-1, including interferon-induced transmembrane proteins, or IFITMs. When IFITMs are reduced in EVs, key antiviral activities are mitigated. These proteins are among several whose expression is disrupted by Nef in HIV-1 infection.
The researchers found that Nef could modify the levels of more than 35% of the proteins identified in EVs, and among the decreased proteins were three members of the IFITM family. These proteins are pivotal in the body’s antiviral response against viruses including Zika, dengue, influenza and HIV.
“By decoding these intricate cellular dialogues, our work contributes a small but significant piece to the broader narrative of scientific discovery surrounding HIV-1 infection, offering potential avenues for advancements in medical interventions,” da Silva Januário said.
Unraveling the biological significance of altered proteins in EVs in relation to viral infection and replication are important next steps, she said. “We anticipate that further exploration in this direction will provide valuable insights for the field, shedding light on the intricate processes influenced by Nef and contributing to a deeper understanding of the broader implications for viral dynamics.”
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Parsing plant pigment pathways
Erich Grotewold of Michigan State University, an ASBMB Breakthroughs speaker, discusses his work on the genetic regulation of flavonoid biosynthesis.

Calcium channel linked to cancer drug resistance
Researchers discover a protein associated with carboplatin-resistant retinoblastoma, suggesting this protein could be a promising therapeutic target. Read more about this recent Journal of Biological Chemistry paper.

Host fatty acids enhance dengue virus infectivity
Researchers in Germany find that viral replication depends on host enzymes that synthesize lipids, revealing potential metabolic targets for antiviral intervention. Read more about this recent Journal of Biological Chemistry paper.

Antibodies inhibit hyperactive protein disposal
Researchers at the University of California, San Francisco, identify an enzyme inhibitor, offering new tools to study diseases like cystic fibrosis, neurodegeneration and cancer. Read more about this recent Journal of Biological Chemistry paper.

Scientists find unexpected correlation between age and HDL-C levels
In a 30-year multicenter study, researchers determined what factors predict HDL-C concentration. In their analysis, they found that HDL-C levels grew with increasing age and physical activity.

Butter, olive oil, coconut oil — what to choose?
Depending on the chain length and origin of the fat, regular fat consumption changes the specific makeup of fats in bloodstream and affect mild to severe cholesterol patterns. Read about this recent Journal of Lipid Research study.