New mass spectrometry tool accurately identifies bacteria
Scientists identify bacterial species by analyzing their proteins using mass spectrometry, or MS. This technique first fragments proteins into smaller peptides using an enzyme called trypsin. These sequences can then be compared to references in databases. The largest MS-based studies on bacteria have focused on just a handful of species, so a team of researchers recently created a resource for mapping data onto a more diverse population of bacteria.

Miriam Abele, Armin Soleymaniniya and colleagues at the Technical University of Munich developed MS2Bac, a software system that enables bacterial identification from protein data. They published their in Molecular & Cellular Proteomics. MS2Bac maps tryptic peptides onto reference bacterial species or strains, achieving almost perfect accuracy for species identification. To develop this tool, the team first performed MS on the proteins from over 300 bacterial species to create a reference database. They also compared their identification method with other approaches, such as Fourier transform infrared spectroscopy, and found that MS2Bac was the most accurate.
MS2Bac can also identify specific proteins, antibiotic resistance markers. It covers many hypothetical proteins, which are not well understood, providing a basis for further functional studies. This is the first study to incorporate single-cell organisms into the database, a proteomics resource for multiomics analyses. This tool will greatly help researchers and clinicians determine bacterial species from clinically and environmentally relevant samples.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Parsing plant pigment pathways
Erich Grotewold of Michigan State University, an ASBMB Breakthroughs speaker, discusses his work on the genetic regulation of flavonoid biosynthesis.

Calcium channel linked to cancer drug resistance
Researchers discover a protein associated with carboplatin-resistant retinoblastoma, suggesting this protein could be a promising therapeutic target. Read more about this recent Journal of Biological Chemistry paper.

Host fatty acids enhance dengue virus infectivity
Researchers in Germany find that viral replication depends on host enzymes that synthesize lipids, revealing potential metabolic targets for antiviral intervention. Read more about this recent Journal of Biological Chemistry paper.

Antibodies inhibit hyperactive protein disposal
Researchers at the University of California, San Francisco, identify an enzyme inhibitor, offering new tools to study diseases like cystic fibrosis, neurodegeneration and cancer. Read more about this recent Journal of Biological Chemistry paper.

Scientists find unexpected correlation between age and HDL-C levels
In a 30-year multicenter study, researchers determined what factors predict HDL-C concentration. In their analysis, they found that HDL-C levels grew with increasing age and physical activity.

Butter, olive oil, coconut oil — what to choose?
Depending on the chain length and origin of the fat, regular fat consumption changes the specific makeup of fats in bloodstream and affect mild to severe cholesterol patterns. Read about this recent Journal of Lipid Research study.