Huntington’s disease: a rare cousin of Alzheimer’s
Many of us have heard of the neurological disorder Alzheimer’s disease, which affects 1 in 9 over the age of 65. But fewer are familiar with a rarer form of dementia called Huntington’s disease which affects just 5.7 of every 100,000 people.
May is , so let’s dive in a bit on what this disease is and where we are in treating it.
Discovery and diagnosis of Huntington’s
Huntington’s is an inherited neurological disorder that breaks down nerve cells involved in voluntary movement. The disease was first characterized by George Huntington in his detailing patients’ loss of motor control, jerky movements, personality changes, and cognitive decline. Huntington documented a hereditary pattern for the disease, but it wasn’t until when the Huntington gene (HTT) was molecular mapped to a human chromosome.
Gene regulation
regulates neuronal and glial function in the brain, but an abnormal expansion of glutamine (polyQ) leads to Huntington’s. These abnormal HTT proteins form glue-y plaques in the brain — clumps of the protein with a specific Beta-sheet fold and difficult-to-dissolve (insoluble) structure.
Treating the plaques
Amyloid plaques are a among many neurological diseases (i.e. alpha-synuclein in Parkinson’s, amyloid-beta in Alzheimer’s). These diseases are difficult to treat due to their rigid and insoluble nature and the lack of tools able to disassemble these plaques in cells.
of Huntington’s disease focus on limiting involuntary movements, but unfortunately this is preventative management and not a cure.
Recent for Alzheimer’s targets the amyloid plaque related to the disease, beta-amyloid, and many think similar approaches can be used for other amyloid plaque based diseases including Huntington’s.

Related stories
Huntingtin through a multiomic lens: A study shows that the mutant protein that causes Huntington’s disease can alter the binding properties of another protein, perhaps accounting for some of the mutation’s far-flung cellular effects.
A very delicate balance: Could blocking lysosomal gatekeeper PIKfyve slow neurodegeneration?
A family history of Alzheimer’s sparks interest in basic research: JBC Herbert Tabor Early Career Investigator Award winner Jenna Lentini shares her work at Discover BMB.
Overcoming missed connections to battle Alzheimer’s: Researchers identify a protein that may allow some people to resist dementia despite plaque accumulation.
Reimagining drugs for rare brain disorder: Researchers develop new pipeline to screen large number of existing compounds to find a therapy for an ataxia.
Neurodegenerative disease linked to microtubules: A team at McGill University reports a new role for sacsin, the protein mutated in a rare hereditary ataxia.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Understanding the roles of extracellular matrix and vesicles in valvular disease
MOSAIC scholar Cassandra Clift uses mass spectrometry and multiomics to study cardiovascular calcification and collagen dysregulation, bridging her background in bioengineering and biology to investigate extracellular vesicles and heart disease.

Lipid profiles reveal sex differences in type 2 diabetes
Researchers explored the lipid profiles of individuals with type 2 diabetes and identified potentially useful lipid biomarkers for this condition.

Serum lipids may predict early diabetes risk
Researchers found that levels of two key fatty acids may predict worsening tolerance for glucose, independent of body fat and insulin levels. In turn, these fatty acids may serve as early T2D biomarkers.

Sex and diet shape fat tissue lipid profiles in obesity
Researchers found that sex hormone levels and diet both influence inflammation and lipid composition in obesity.

Mapping the placenta’s hormone network
Study uncovers how the placenta actively metabolizes not only glucocorticoids but also novel androgens and progesterones, reshaping our understanding of pregnancy and its complications.

Biochemists and molecular biologists sweep major 2025 honors
Recent Nobel, MacArthur and Kimberly Prize honorees highlight the power of biochemistry and molecular biology to drive discovery, including immune tolerance, vaccine design and metabolic disease, and to advance medicine and improve human health.