精品国产一区二区桃色

Journal News

Omics study unveils molecular mechanisms of a parasitic infection

Jaclyn Brennan-McLean
May 25, 2021

Paramphistomes, also known as rumen or stomach fluke, are flatworm parasites that infect sheep and cattle in temperate and tropical regions. In recent years, the incidence and severity of rumen fluke infections (specifically the paramphistome Calicophoron daubneyi) have increased sharply in Western Europe. Heavy infections of immature rumen fluke in the small intestine can lead to hemorrhaging and even death, so early detection and correct diagnosis are imperative. However, researchers still know little about the biology of C. daubneyi and its effects on host animals.

Mark Robinson's lab at Queen's University Belfast focuses on parasitic worms and how they interact with their hosts at the molecular level. He has studied liver fluke for over 20 years. With the recent emergence of the less-studied rumen fluke in Europe (particularly in Northern Ireland, where his lab is based), his latest work shifted to understanding this unusual parasite and its host interactions. His , published in the journal Molecular & Cellular Proteomics, show how C. daubneyiregulates expression and secretion of certain molecules to establish infection, feed on host tissue and fight off the host immune response in ruminant livestock.

精品国产一区二区桃色-rumen-fluke-445x344.jpg
Robinson lab / Queen's University Belfast
This illustration shows the development of the rumen fluke Calicophoron daubneyi. In a recent study, secretome profiling revealed distinct families of virulence factors and immunomodulators associated with acute and chronic infection.

To begin to investigate the molecular biology of rumen fluke, Robinson's group teamed up with other researchers from the United Kingdom. Together, they performed transcriptome analysis of four rumen fluke life-cycle stages and integrated these results with proteomic analysis of secretions from two of these stages. They picked the juvenile flukes and mature adult stages for the proteomics studies, as these are the key stages responsible for acute and chronic disease, respectively.

Juvenile flukes emerge in the small intestine and eventually migrate along the digestive tract to the rumen, where they mature into adults. During each stage, the parasite must adapt to drastic changes in the host microenvironment and counter inevitable attacks by the host immune system. According to Robinson's findings, they do so easily.

"The rumen fluid is like a soup of bacteria and protozoans which the flukes must live amongst and survive," Robinson said.

Rumen flukes appear to secrete certain molecules that help them establish and maintain infection within this challenging host environment. Robinson likens the protective properties of these secreted molecules to those of the garments worn by astronauts: "Imagine stepping onto the surface of the moon without a space suit — you wouldn't last very long. Same goes for flukes within their host environments without their shield of secreted molecules."

Robinson believes the host–parasite interface can be adjusted to fight off infection. "If we can devise ways of blocking the secreted molecules, which are so important for the parasite, we may be able to come up with new treatment options," he said.

The lab has developed the first enzyme-linked immunosorbent assay for C. daubneyi, which they hope can be used by veterinarians, animal producers and farmers for disease surveillance and diagnosis. Next, Robinson wants to perform functional studies to validate certain molecules as targets for fluke control. As with all the work done in his lab, these efforts center on improving animal health and welfare, which he says is of benefit to everyone.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Jaclyn Brennan-McLean

Jaclyn Brennan-McLean earned her Ph.D. in biomedical engineering from George Washington University in 2020 with a research focus in cardiac electrophysiology. She is a 2022-2023 AAAS Science & Technology Policy fellow.

Get the latest from ASBMB Today

Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Understanding the roles of extracellular matrix and vesicles in valvular disease
Profile

Understanding the roles of extracellular matrix and vesicles in valvular disease

Oct. 30, 2025

MOSAIC scholar Cassandra Clift uses mass spectrometry and multiomics to study cardiovascular calcification and collagen dysregulation, bridging her background in bioengineering and biology to investigate extracellular vesicles and heart disease.

Lipid profiles reveal sex differences in type 2 diabetes
Journal News

Lipid profiles reveal sex differences in type 2 diabetes

Oct. 29, 2025

Researchers explored the lipid profiles of individuals with type 2 diabetes and identified potentially useful lipid biomarkers for this condition.

Serum lipids may predict early diabetes risk
Journal News

Serum lipids may predict early diabetes risk

Oct. 29, 2025

Researchers found that levels of two key fatty acids may predict worsening tolerance for glucose, independent of body fat and insulin levels. In turn, these fatty acids may serve as early T2D biomarkers.

Sex and diet shape fat tissue lipid profiles in obesity
Journal News

Sex and diet shape fat tissue lipid profiles in obesity

Oct. 29, 2025

Researchers found that sex hormone levels and diet both influence inflammation and lipid composition in obesity.

Mapping the placenta鈥檚 hormone network
Journal News

Mapping the placenta鈥檚 hormone network

Oct. 21, 2025

Study uncovers how the placenta actively metabolizes not only glucocorticoids but also novel androgens and progesterones, reshaping our understanding of pregnancy and its complications.

Biochemists and molecular biologists sweep major 2025 honors
News

Biochemists and molecular biologists sweep major 2025 honors

Oct. 20, 2025

Recent Nobel, MacArthur and Kimberly Prize honorees highlight the power of biochemistry and molecular biology to drive discovery, including immune tolerance, vaccine design and metabolic disease, and to advance medicine and improve human health.