精品国产一区二区桃色

Journal News

Seeking to cure a coronavirus fatal to cats

Sneha Das
July 18, 2023

All of us have witnessed the impact of the caused by the SARS-CoV-2 that claimed more than 6 million lives worldwide. The coronavirus family is made up of RNA viruses that infect many mammals and birds. In humans, outcomes can range from the common cold to fatal . 

Like humans, cats can be infected by coronaviruses. Most cats are exposed as kittens to the feline alphacoronavirus, or FCoV. One found that 40% of domestic cats in the United Kingdom had antibodies for FCoV, suggesting prior infection. Most FCoV infections are asymptomatic or cause mild disease in the gastrointestinal tract. However, in 5% of cases, the virus spreads and results in a fatal disease called , or FIP. Experts believe that the gastrointestinal coronavirus strain can mutate into the more that causes FIP.

, an assistant professor at the Western University of Health Sciences in California studies infectious diseases caused by RNA viruses.

“FIP is a devastating disease that affects cats worldwide,” Mir said, “and currently, there are no effective treatments available for this condition.”

A coronavirus enters a host cell and multiplies there before exiting to infect new cells. Before the virus exits, it makes multiple copies of its RNA and packages it into its nucleocapsid, an outer shell that protects the viral RNA outside the host.

Mir’s group found that a novel compound called K31 targets the nucleocapsid protein of FCoV and stops it from multiplying. In cell culture models, the virus was undetectable 24 hours after treatment with a single dose of K31. The researchers reported this discovery in a published in the Journal of Biological Chemistry.

How does K31 inhibit the virus at the molecular level? When nucleocapsids are packaged with viral RNA, they form ribonucleocapsids, which coronaviruses rely on to make more copies of the viral RNA. K31 disrupts the structural integrity of these ribonucleocapsids, and this has a catastrophic effect on the virus within the host.

“Cell culture studies are useful for the initial screening of potential compounds, and this study provides a promising starting point,” Mir said. “The identification of K31 is an exciting development, but more research is needed to evaluate its effectiveness and safety in living animals.”

Mir’s group previously found that K31 inhibits the and a new world hantavirus that causes in humans. Initial cell culture studies suggest that K31 is well tolerated by host cells and might be developed into a broad-spectrum antiviral as well as an anti-coronavirus drug.

Previous has focused on targets such as RNA-dependent RNA polymerase, spike protein, and envelope protein, Mir said, but this study shows the nucleocapsid is also a druggable target.

FIP kills worldwide. According to Mir, targeted therapies with compounds like K31 could soon be an effective treatment with minimal side effects.

“It is exciting to see that our research project has identified a novel molecule that has potential for further development as an antiviral therapy,” Mir said. “It offers hope to cat owners.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Sneha Das

Sneha Das is a research development manager at the University of Illinois at Urbana–Champaign and an ASBMB Today volunteer contributing writer.

Get the latest from ASBMB Today

Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

RA patient blood reveals joint innerworkings
Journal News

RA patient blood reveals joint innerworkings

July 25, 2025

Researchers in the Netherlands use mass spectrometry to compare the proteome of plasma and synovial fluid in rheumatoid arthritis patients and find a correlation. Read more about this recent paper in Molecular & Cellular Proteomics.

Hope for a cure hangs on research
Essay

Hope for a cure hangs on research

July 17, 2025

Amid drastic proposed cuts to biomedical research, rare disease families like Hailey Adkisson鈥檚 fight for survival and hope. Without funding, science can鈥檛 鈥渃atch up鈥 to help the patients who need it most.

Before we鈥檝e lost what we can鈥檛 rebuild: Hope for prion disease
Feature

Before we鈥檝e lost what we can鈥檛 rebuild: Hope for prion disease

July 15, 2025

Sonia Vallabh and Eric Minikel, a husband-and-wife team racing to cure prion disease, helped develop ION717, an antisense oligonucleotide treatment now in clinical trials. Their mission is personal 鈥 and just getting started.

Defeating deletions and duplications
News

Defeating deletions and duplications

July 11, 2025

Promising therapeutics for chromosome 15 rare neurodevelopmental disorders, including Angelman syndrome, Dup15q syndrome and Prader鈥揥illi syndrome.

Using 'nature鈥檚 mistakes' as a window into Lafora disease
Feature

Using 'nature鈥檚 mistakes' as a window into Lafora disease

July 10, 2025

After years of heartbreak, Lafora disease families are fueling glycogen storage research breakthroughs, helping develop therapies that may treat not only Lafora but other related neurological disorders.

Cracking cancer鈥檚 code through functional connections
News

Cracking cancer鈥檚 code through functional connections

July 2, 2025

A machine learning鈥揹erived protein cofunction network is transforming how scientists understand and uncover relationships between proteins in cancer.