精品国产一区二区桃色

Journal News

Engineered fusion protein targets kiwifruit pathogen

Emily Ulrich
Aug. 6, 2025

The plant pathogen Pseudomonas syringae pv. actinidiae, or Psa, causes kiwifruit canker and contributes to larger issues of food shortage. Finding biocontrol agents that specifically target this pathogen would benefit agricultural production. Endolysin enzymes from bacteriophages have emerged as promising candidates. Endolysins cleave peptidoglycan, a layer of the cell wall in gram-positive bacteria. However, the gram-negative Psa has an outer membrane that shields the peptidoglycan inner layer. Suzanne Warring and Hazel Sisson at the University of Otago and a team of international scientists recently published their in the Journal of Biological Chemistry on developing an endolysin fusion protein active against Psa.

The authors used VersaTile molecular shuffling, a technique that created a library of phage proteins attached to endolysin. They performed a high-throughput screen for peptidoglycan-degrading activity and identified a lead compound that inhibited Psa growth. This hit compound, called ELP-E10, contains a lipase fused to endolysin, and the authors determined that the antibacterial activity relies on functional active sites for each fusion partner.

Notably, ELP-E10 shows specific activity for Psa, especially when combined with citric acid as a chemical permeabilizer. The researchers tested ELP-E10 activity against pathogens Pseudomonas aeruginosa and Staphylococcus aureus, as well as the commensal soil bacteria Pseudomonas fluorescens, and found that ELP-E10 shows specificity for Psa.

More experiments will help determine the exact outer membrane substrate that the lipase of ELP-E10 targets to allow the endolysin to reach the Psa peptidoglycan. These results suggest that endolysin fusion proteins could form promising antimicrobial candidates for agricultural use.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Emily Ulrich

Emily Ulrich is the ASBMB’s science editor.

Get the latest from ASBMB Today

Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Protein modifications drive lung cancer resistance
Journal News

Protein modifications drive lung cancer resistance

Nov. 6, 2025

New assay enriches protein modifications in a single process, enabling detection of key changes in drug-resistant lung cancer cells that may guide future therapies.

How antigen-processing proteins shape immunity
Journal News

How antigen-processing proteins shape immunity

Nov. 6, 2025

Researchers show how components of the antigen processing machinery shape the immunopeptidome, offering insights into immune regulation and cancer biology.

New chemical strategy boosts accuracy in proteomics
Journal News

New chemical strategy boosts accuracy in proteomics

Nov. 6, 2025

Researchers develop a methylamine-based method that nearly eliminates peptide overlabeling in proteomics, improving accuracy in protein identification and quantitation.

Understanding the roles of extracellular matrix and vesicles in valvular disease
Profile

Understanding the roles of extracellular matrix and vesicles in valvular disease

Oct. 30, 2025

MOSAIC scholar Cassandra Clift uses mass spectrometry and multiomics to study cardiovascular calcification and collagen dysregulation, bridging her background in bioengineering and biology to investigate extracellular vesicles and heart disease.

Lipid profiles reveal sex differences in type 2 diabetes
Journal News

Lipid profiles reveal sex differences in type 2 diabetes

Oct. 29, 2025

Researchers explored the lipid profiles of individuals with type 2 diabetes and identified potentially useful lipid biomarkers for this condition.

Serum lipids may predict early diabetes risk
Journal News

Serum lipids may predict early diabetes risk

Oct. 29, 2025

Researchers found that levels of two key fatty acids may predict worsening tolerance for glucose, independent of body fat and insulin levels. In turn, these fatty acids may serve as early T2D biomarkers.