Health journey helps researcher teach old mice new tricks
Eileen Parks’ diagnosis led to hours of midnight reading, years in the lab and, recently, a discovery that improves our understanding of cognitive changes with age.
“I have a very specific type of epilepsy,” the Oklahoma University graduate student explained. “My seizures are controlled now by medication. But my science brain wanted to understand (why) … I can only have a seizure during the second or third day of my menstrual period.”
For about one in three women with epilepsy, the odds of having a seizure fluctuate in synchrony with their menstrual cycle — more specifically, with progesterone. Parks calls progesterone “the master hormone” because enzymes can convert it into other hormones and metabolites with diverse biological activity. One of those, allopregnanolone, piqued her interest.
“If I’m curious about something, I will literally spend all night on my computer reading everything I could find out about it,” Parks said. She learned that allopregnanolone tends to suppress seizures because it binds to and affects the activity of a receptor for the neurotransmitter GABA, or gamma-aminobutyric acid. GABA-responsive neurons, which generally inhibit other neurons’ activity, can help dial back the excessive stimulation thought to lead to epilepsy.
Her dogged curiosity carried Parks into a graduate research fellowship in the lab of Bill Sonntag, an Oklahoma University Health Sciences Center professor who studies the impacts of aging on the brain. Parks’ interest did not fit perfectly into the lab’s research, but Sonntag told her she had a legitimate question; very little was known about how allopregnanolone alters during aging.
“It’s reduced in all these disease models: epilepsy, PTSD, Alzheimer’s,” Parks said. “But only a few studies have really investigated its levels in normal aging.” None, she added, had looked at the regulation of allopregnanolone synthesis in the aging brain.
By the end of a mouse’s two-year lifespan, it becomes as forgetful as a human many decades older. An old mouse takes longer than its young peers to learn where it can climb out of a water maze or which of three doors it must pass through to receive a food pellet. Parks, Sonntag and colleagues showed that that decline in sharpness correlated with a decline in allopregnanolone.
Younger mice learned faster; older mice more slowly. But when the older mice received a booster dose of allopregnanolone, that gap shrank. The team then found that giving young mice an infusion of the inflammatory cytokine interleukin-6 or blocking its activity in older mice also could reduce the gap.
That meant the changes were caused by increasing inflammation. As they grew older and accumulated the inflammatory molecule interleukin-6, mice made less of the enzymes that convert progesterone to allopregnanolone. Meanwhile, they made more of the enzymes that convert progesterone into corticosteroids associated with stress — another known facet of aging. “This is a phenomenon we’re aware of that happens with age,” Sonntag said. “The increase in glucocorticoids has been investigated a lot” and linked to inflammation.
In their recent paper in the Journal of Lipid Research, the team left open the question of how allopregnanolone improves cognition. But they have hypotheses: Perhaps, by altering GABA receptor function, allopregnanolone affects the birth of new neurons, which require GABA. Or the hormone might alter the way that neurons use energy, as it’s known to affect mitochondrial function.
In any case, asking about allopregnanolone worked out. “I have one of those personalities where I get really fixated on things,” Parks said. “In this case, it paid off.”
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Understanding the roles of extracellular matrix and vesicles in valvular disease
MOSAIC scholar Cassandra Clift uses mass spectrometry and multiomics to study cardiovascular calcification and collagen dysregulation, bridging her background in bioengineering and biology to investigate extracellular vesicles and heart disease.

Lipid profiles reveal sex differences in type 2 diabetes
Researchers explored the lipid profiles of individuals with type 2 diabetes and identified potentially useful lipid biomarkers for this condition.

Serum lipids may predict early diabetes risk
Researchers found that levels of two key fatty acids may predict worsening tolerance for glucose, independent of body fat and insulin levels. In turn, these fatty acids may serve as early T2D biomarkers.

Sex and diet shape fat tissue lipid profiles in obesity
Researchers found that sex hormone levels and diet both influence inflammation and lipid composition in obesity.

Mapping the placenta鈥檚 hormone network
Study uncovers how the placenta actively metabolizes not only glucocorticoids but also novel androgens and progesterones, reshaping our understanding of pregnancy and its complications.

Biochemists and molecular biologists sweep major 2025 honors
Recent Nobel, MacArthur and Kimberly Prize honorees highlight the power of biochemistry and molecular biology to drive discovery, including immune tolerance, vaccine design and metabolic disease, and to advance medicine and improve human health.