Out with the old, in with the nucleus
Are you tired of binging reruns on Netflix? Maybe you need a break from reality TV but you’re not sure where to turn for high-quality entertainment? Look no further — the nucleus has it all. There’s mystery, murder, machines of extraordinary complexity and visually stunning landscapes.
Stories in nuclear signaling are unraveling at an unprecedented pace thanks to technological and conceptual advances in chemistry, biochemistry and cell biology. Our speakers will address long-standing questions about organism development, cellular identity and the genetic basis for disease.
Submit an abstract
Abstract submission begins Sept. 14. If you submit by Oct. 12, you'll get a decision by Nov. 1. The regular submission deadline is Nov. 30.
You will hear about how cutting-edge interdisciplinary approaches are being used to uncover new regulatory mechanisms underlying transcription, genome structure, and other phenomena in the nucleus. We will also discuss how rapid progress in the field is inspiring new therapeutic approaches for diseases related to dysfunctional nuclear processes.
You don’t want to miss this — even the cytosol junkies will be on the edge of their seats.
Keywords: Enzyme mechanism, genetics and disease, chemical probes, transcription regulation, chromatin modifications, genome structure.
Who should attend: You. Our speakers span a wide breadth of biological phenomena, scientific disciplines and technologies. We have something for everyone. Current projections: standing room only.
Your session’s theme song: by John Williams
This song is about the most important genetics experiment ever performed.
This session is powered by “hot, nasty, bad-*ss speed.” — Eleanor Roosevelt, Talladega Nights
Signaling mechanisms in the nucleus
Chemical strategies to study nuclear processes
Chair: Aaron Johnson
Anna Mapp, University of Michigan

Glen Liszczak, University of Texas Southwestern Medical Center
Oliver Bell, University of Southern California Kerk School of Medicine
Minkui Luo, Memorial Sloan Kettering Cancer Center
Chromatin organization, replication and repair
Chair: Katharine Diehl
Aaron Streets, University of California, Berkeley
Aaron Johnson, University of Colorado Anschutz Medical Campus
Carl Wu, Johns Hopkins University
Serena Sanulli, Stanford University
Chromatin modifications in the nucleus
Chair: Glen Liszczak
Alex Ruthenberg, University of Chicago
Katharine Diehl, University of Utah
Tim Stasevich, Colorado State University
Phil Cole, Harvard University
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Understanding the roles of extracellular matrix and vesicles in valvular disease
MOSAIC scholar Cassandra Clift uses mass spectrometry and multiomics to study cardiovascular calcification and collagen dysregulation, bridging her background in bioengineering and biology to investigate extracellular vesicles and heart disease.

Lipid profiles reveal sex differences in type 2 diabetes
Researchers explored the lipid profiles of individuals with type 2 diabetes and identified potentially useful lipid biomarkers for this condition.

Serum lipids may predict early diabetes risk
Researchers found that levels of two key fatty acids may predict worsening tolerance for glucose, independent of body fat and insulin levels. In turn, these fatty acids may serve as early T2D biomarkers.

Sex and diet shape fat tissue lipid profiles in obesity
Researchers found that sex hormone levels and diet both influence inflammation and lipid composition in obesity.

Mapping the placenta鈥檚 hormone network
Study uncovers how the placenta actively metabolizes not only glucocorticoids but also novel androgens and progesterones, reshaping our understanding of pregnancy and its complications.

Biochemists and molecular biologists sweep major 2025 honors
Recent Nobel, MacArthur and Kimberly Prize honorees highlight the power of biochemistry and molecular biology to drive discovery, including immune tolerance, vaccine design and metabolic disease, and to advance medicine and improve human health.