精品国产一区二区桃色

News

The music of proteins made audible

It's done through a computer program that learns from Chopin
Peng Zhang Yuzong Chen
By Peng Zhang and Yuzong Chen
Nov. 20, 2021

With the right computer program, proteins become pleasant music.

Chopin-445x219.jpg
Training an algorithm to play proteins like Chopin can produce more melodious songs.

There are many surprising analogies between , the basic building blocks of life, and musical notation. These analogies can be used not only to help advance research, but also to make the complexity of proteins accessible to the public.

We’re who believe that hearing the sound of life at the molecular level could help inspire people to learn more about biology and the computational sciences. While creating music based on proteins , different musical styles and composition algorithms had yet to be explored. So we led a team of high school students and other scholars to figure out how to .

The musical analogies of proteins

are structured like folded chains. These chains are composed of small units of 20 possible amino acids, each labeled by a letter of the alphabet.

Protein-structure-445x776.jpg
Aspects of potein structure can be analogous to musical notation.

A protein chain can be represented as a string of these alphabetic letters, very much like a string of music notes in alphabetical notation.

Protein chains can also fold into wavy and curved patterns with ups, downs, turns and loops. Likewise, music consists of sound waves of higher and lower pitches, with changing tempos and repeating motifs.

Protein-to-music algorithms can thus map the structural and physiochemical features of a string of amino acids onto the musical features of a string of notes.

Enhancing the musicality of protein mapping

Protein-to-music mapping can be fine-tuned by basing it on the features of a specific music style. This enhances musicality, or the melodiousness of the song, when converting amino acid properties, such as sequence patterns and variations, into analogous musical properties, like pitch, note lengths and chords.

For our study, we specifically selected 19th-century , which includes composers like Chopin and Schubert, as a guide because it typically spans a wide range of notes with more complex features such as , like playing both white and black keys on a piano in order of pitch, and chords. Music from this period also tends to have lighter and more graceful and emotive melodies. Songs are usually , meaning they follow a central melody with accompaniment. These features allowed us to test out a greater range of notes in our protein-to-music mapping algorithm. In this case, we chose to analyze features of to guide our development of the program.

To test the algorithm, we applied it to 18 proteins that play a key role in various biological functions. Each amino acid in the protein is mapped to a particular note based on how frequently they appear in the protein, and other aspects of their biochemistry correspond with other aspects of the music. A larger-sized amino acid, for instance, would have a shorter note length, and vice versa.

The resulting music is complex, with notable variations in pitch, loudness and rhythm. Because the algorithm was completely based on the amino acid sequence and no two proteins share the same amino acid sequence, each protein will produce a distinct song. This also means that there are variations in musicality across the different pieces, and interesting patterns can emerge.

For example, music generated from the receptor protein that binds to the has some recurring motifs due to the repetition of certain small sequences of amino acids.

OXTR protein music. , 3.28 MB

 

OXTR-890x443.jpg
,
OXTR, or the oxytocin receptor, has repeating sequences of amino acids.

On the other hand, music generated from , a protein that prevents cancer formation, is highly chromatic, producing particularly fascinating phrases where the music sounds almost , a style that often features fast and virtuoso technique.

TP53 protein music. , 2.12 MB

 

TP53-890x443.jpg
,
TP53, or tumor protein p53, produces chromatic music.

By guiding analysis of amino acid properties through specific music styles, protein music can sound much more pleasant to the ear. This can be further developed and applied to a wider variety of music styles, including pop and jazz.

Protein music is an example of how combining the biological and computational sciences can produce beautiful works of art. Our hope is that this work will encourage researchers to compose protein music of different styles and inspire the public to learn about the basic building blocks of life.

This study was collaboratively developed with Nicole Tay, Fanxi Liu, Chaoxin Wang and Hui Zhang.

This article is republished from under a Creative Commons license. Read the .

The Conversation

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Peng Zhang
Peng Zhang

Peng Zhang is a postdoctoral researcher in computational biology at the Rockefeller University.

Yuzong Chen
Yuzong Chen

Yuzong Chen is a professor of pharmacy at the National University of Singapore.

Get the latest from ASBMB Today

Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

RA patient blood reveals joint innerworkings
Journal News

RA patient blood reveals joint innerworkings

July 25, 2025

Researchers in the Netherlands use mass spectrometry to compare the proteome of plasma and synovial fluid in rheumatoid arthritis patients and find a correlation. Read more about this recent paper in Molecular & Cellular Proteomics.

Hope for a cure hangs on research
Essay

Hope for a cure hangs on research

July 17, 2025

Amid drastic proposed cuts to biomedical research, rare disease families like Hailey Adkisson鈥檚 fight for survival and hope. Without funding, science can鈥檛 鈥渃atch up鈥 to help the patients who need it most.

Before we鈥檝e lost what we can鈥檛 rebuild: Hope for prion disease
Feature

Before we鈥檝e lost what we can鈥檛 rebuild: Hope for prion disease

July 15, 2025

Sonia Vallabh and Eric Minikel, a husband-and-wife team racing to cure prion disease, helped develop ION717, an antisense oligonucleotide treatment now in clinical trials. Their mission is personal 鈥 and just getting started.

Defeating deletions and duplications
News

Defeating deletions and duplications

July 11, 2025

Promising therapeutics for chromosome 15 rare neurodevelopmental disorders, including Angelman syndrome, Dup15q syndrome and Prader鈥揥illi syndrome.

Using 'nature鈥檚 mistakes' as a window into Lafora disease
Feature

Using 'nature鈥檚 mistakes' as a window into Lafora disease

July 10, 2025

After years of heartbreak, Lafora disease families are fueling glycogen storage research breakthroughs, helping develop therapies that may treat not only Lafora but other related neurological disorders.

Cracking cancer鈥檚 code through functional connections
News

Cracking cancer鈥檚 code through functional connections

July 2, 2025

A machine learning鈥揹erived protein cofunction network is transforming how scientists understand and uncover relationships between proteins in cancer.