精品国产一区二区桃色

News

Knocking out drug side effects with supercomputing

A Stanford team employs the world鈥檚 most powerful supercomputer in drug design efforts
Rachel Marisa Harken Tom Abate
By Rachel Marisa Harken and Tom Abate
Nov. 21, 2020

Psychedelic drugs could be effective in treating psychiatric disorders such as depression and post-traumatic stress disorder, but medical use of these drugs is limited by the hallucinations they cause.

"What if we could redesign drugs to keep their benefits while eliminating their unwanted side effects?" asked Ron Dror, an associate professor of computer science at . Dror's lab is developing computer simulations using the world's most powerful and smartest supercomputer for open science, the supercomputer at the (OLCF), to help researchers do just that.

In an , Dror's team describes discoveries that could be used to minimize or eliminate side effects in a broad class of drugs that target G protein-coupled receptors, or GPCRs. GPCRs are proteins found in all human cells. Lysergic acid diethylamide (LSD) molecules and other psychedelics attach to GPCRs—but so do about a third of all prescription drugs, including medications for allergies, blood pressure, and pain. So important is this molecular mechanism that Stanford professor Brian Kobilka shared the 2012 Nobel Prize in Chemistry for his role in discovering how GPCRs work.

When a drug molecule attaches to a GPCR, it can cause multiple simultaneous changes in the cell. Some of these changes might contribute to a drug's beneficial effects, but others can lead to less-than-desirable or even dangerous effects.

Supercomputing-890x319.jpg
Carl-Mikael Suomivuori, Stanford University
A visualization of two differing protein arrangements (conformations) for the angiotensin II type 1 receptor. The orange arrangement only allows for arrestin protein coupling, but the blue arrangement allows for both arrestin and g protein coupling. Simulations of receptor conformations can help researchers understand why some drugs cause unwanted side effects.

Using the OLCF's Summit and a computing cluster at Stanford, the team compared computer simulations of a GPCR with different molecules attached. Dror's team was then able to pinpoint how a drug molecule can alter the way a GPCR's atoms are ordered. Changing the protein's atomic arrangement affects the protein shape and can allow a drug molecule to deliver beneficial effects without side effects—something that has remained mysterious until now. Based on these results, the researchers designed new molecules that were shown computationally to cause beneficial changes in cells without unwanted changes. Although these designed molecules are not yet suitable for use as drugs in humans, they represent a crucial first step toward developing side-effect-free drugs.

Today, researchers typically test millions of drug candidates—first in test tubes, then in animals, and finally in humans—hoping to find a "magic" molecule that is both effective and safe, meaning that any side effects are tolerable. This massive undertaking typically takes many years and costs billions of dollars, and the resulting drug often still has some frustrating side effects.

The discoveries by Dror's team promise to allow researchers to bypass much of that trial-and-error work so that they can bring promising drug candidates into animal and human trials faster and with a greater likelihood of success.

Stanford postdoctoral scholar Carl-Mikael Suomivuori and former graduate student Naomi Latorraca led an 11-member team that included Robert Lefkowitz of , with whom Kobilka shared the Nobel Prize, and Andrew Kruse of , Kobilka's former student.

"In addition to revealing how a drug molecule could cause a GPCR to trigger only beneficial effects, we've used these findings to design molecules with desired physiological properties, which is something that many labs have been trying to do for a long time," Dror said. "Armed with our results, researchers can begin to imagine new and better ways to design drugs that retain their effectiveness while posing fewer dangers."

Dror hopes that such research will eventually eliminate the dangerous side effects of drugs used to treat a wide variety of diseases, including heart conditions, psychiatric disorders, and chronic pain.

The team's simulations were performed under a computing allocation in the Innovative and Novel Computational Impact on Theory and Experiment program at the OLCF, a (DOE) User Facility located at DOE's .

This story was  at Stanford University and adapted by Rachel Marisa Harken at Oak Ridge National Laboratory.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Rachel Marisa Harken
Rachel Marisa Harken

Rachel Marisa Harken produces feature articles about the scientific research performed on the high-performance computing resources at Oak Ridge National Laboratory. Her focus is on fields such as biology, chemistry, physics, materials, fusion, and data science.

Tom Abate
Tom Abate

Tom Abate is a U.S. Navy veteran and former business owner who now works for Stanford University, helping to make scientific discoveries understandable and relevant to policy makers and the public.

Get the latest from ASBMB Today

Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

RA patient blood reveals joint innerworkings
Journal News

RA patient blood reveals joint innerworkings

July 25, 2025

Researchers in the Netherlands use mass spectrometry to compare the proteome of plasma and synovial fluid in rheumatoid arthritis patients and find a correlation. Read more about this recent paper in Molecular & Cellular Proteomics.

Hope for a cure hangs on research
Essay

Hope for a cure hangs on research

July 17, 2025

Amid drastic proposed cuts to biomedical research, rare disease families like Hailey Adkisson鈥檚 fight for survival and hope. Without funding, science can鈥檛 鈥渃atch up鈥 to help the patients who need it most.

Before we鈥檝e lost what we can鈥檛 rebuild: Hope for prion disease
Feature

Before we鈥檝e lost what we can鈥檛 rebuild: Hope for prion disease

July 15, 2025

Sonia Vallabh and Eric Minikel, a husband-and-wife team racing to cure prion disease, helped develop ION717, an antisense oligonucleotide treatment now in clinical trials. Their mission is personal 鈥 and just getting started.

Defeating deletions and duplications
News

Defeating deletions and duplications

July 11, 2025

Promising therapeutics for chromosome 15 rare neurodevelopmental disorders, including Angelman syndrome, Dup15q syndrome and Prader鈥揥illi syndrome.

Using 'nature鈥檚 mistakes' as a window into Lafora disease
Feature

Using 'nature鈥檚 mistakes' as a window into Lafora disease

July 10, 2025

After years of heartbreak, Lafora disease families are fueling glycogen storage research breakthroughs, helping develop therapies that may treat not only Lafora but other related neurological disorders.

Cracking cancer鈥檚 code through functional connections
News

Cracking cancer鈥檚 code through functional connections

July 2, 2025

A machine learning鈥揹erived protein cofunction network is transforming how scientists understand and uncover relationships between proteins in cancer.