Can membrane stress protect mycobacteria?
Every now and then, what seems like a minor observation leads to a multiyear journey.
at the University of Massachusetts Amherst studies the pathogenesis of mycobacteria, a genus that includes tuberculosis- and leprosy-causing species. Specifically, they study the multilayered plasma membrane and cell wall system that protect these bacteria — from antiseptic cleaning agents, for instance.

While working on an unrelated project, lab members noticed that membrane fluidization led two membrane glycolipids (lipids with a carbohydrate attached via glycosidic bond) called phosphatidylinositol mannosides, or PIMs, to undergo acylation. The two triacylated PIMs were transformed into their tetra-acylated forms.
The lab’s study exploring the conditions for and effects of this acylation in the Journal of Lipid Research. Peter Nguyen, an undergraduate researcher in the Morita lab, was first author on the paper. “We wanted to study this phenomenon, this physiological response to a membrane fluidizing, because we thought it might be significant to how mycobacterial cells can respond to certain stresses, like environmental threats,” he said.
Early on, the lab decided to take a systematic approach. Early experiments showed that PIMs are the only major class of bacterial lipids affected by benzyl alcohol, a membrane fluidizer, and that the effect is a biological response (as opposed to an experimental artifact). The scientists also tested other types of membrane stressors, ultimately finding that only membrane fluidizers caused the full acylation effect.
This particular result came about halfway through the experimental process, which was a relief, Nguyen said. “If there was anything (else) being thrown at it that caused acylation, it would have been a much different story.”
One surprising result came when the scientists examined the reaction kinetics of acylation. As with all the experiments, they used high-performance thin-layer chromatography to visualize the presence of each PIM qualitatively and a mannose standard curve to find relative quantities. A time course experiment showed that the conversion of triacylated to tetra-acylated PIMs took just 20 minutes — one of the fastest cases of mass lipid conversions seen to date. Most mass conversions of mature lipids take several hours, so this reaction’s speed indicates an enzymatic mechanism independent of protein synthesis.
The researchers don’t know what this enzyme is, but Nguyen said, “It seems to play a significant role in what’s happening in response to environmental threats.”
They have shown that rapid PIM acylation is conserved among mycobacteria including the tuberculosis pathogen. Now, they need to identify the acyltransferase to understand better how these cells respond to stress, he added. “A lot of the membrane synthesis in mycobacteria is not well (understood), which is a big issue because tuberculosis is still a huge public health threat.”
The researchers also looked at some practical implications of PIM acylation by testing the response of Mycobacterium smegmatis, a nonpathogenic cousin of Mycobacterium tuberculosis, to antiseptic detergents benzethonium chloride and sodium dodecyl sulfate, or BTC and SDS, with and without a membrane fluidizing pretreatment. While the SDS sensitivity was unaffected by benzyl alcohol fluidization, the pretreated cells were far more resistant to BTC than their untreated counterparts.
The team hypothesizes that increased PIM acylation strengthens the membrane and thus the bacteria’s defenses. While it’s not great news for humans trying to avoid life-threatening diseases, the results bring researchers one step closer to understanding how mycobacteria membranes work and, by extension, how we can counter them.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Omega-3 fats linked to healthy aging and improved heart metabolism
Scientists from the University of Iowa find that a diet high in polyunsaturated fatty acids from fish oil increases cardiac triglyceride uptake and improves insulin sensitivity. Read more about this recent JLR study.

RA patient blood reveals joint innerworkings
Researchers in the Netherlands use mass spectrometry to compare the proteome of plasma and synovial fluid in rheumatoid arthritis patients and find a correlation. Read more about this recent paper in Molecular & Cellular Proteomics.

Hope for a cure hangs on research
Amid drastic proposed cuts to biomedical research, rare disease families like Hailey Adkisson鈥檚 fight for survival and hope. Without funding, science can鈥檛 鈥渃atch up鈥 to help the patients who need it most.

Before we鈥檝e lost what we can鈥檛 rebuild: Hope for prion disease
Sonia Vallabh and Eric Minikel, a husband-and-wife team racing to cure prion disease, helped develop ION717, an antisense oligonucleotide treatment now in clinical trials. Their mission is personal 鈥 and just getting started.

Defeating deletions and duplications
Promising therapeutics for chromosome 15 rare neurodevelopmental disorders, including Angelman syndrome, Dup15q syndrome and Prader鈥揥illi syndrome.

Using 'nature鈥檚 mistakes' as a window into Lafora disease
After years of heartbreak, Lafora disease families are fueling glycogen storage research breakthroughs, helping develop therapies that may treat not only Lafora but other related neurological disorders.