¾«Æ·¹ú²úÒ»Çø¶þÇøÌÒÉ«

News

Toxoplasma gondii parasite uses unconventional method to make proteins for evasion of drug treatment

Indiana University School of Medicine Staff
By Indiana University School of Medicine Staff
Jan. 4, 2025

A study by Indiana University School of Medicine researchers sheds new light on how Toxoplasma gondii parasites make the proteins they need to enter a dormant stage that allows them to escape drug treatment. It was recently .

Toxoplasma gondii is a single-celled parasite that people catch from cat feces, unwashed produce or undercooked meat. The parasite has infected up to one-third of the world's population, and after causing mild illness, it persists by entering a dormant phase housed in cysts throughout the body, including the brain.

Toxoplasma gondii.
Michael Holmes
Toxoplasma gondii

Toxoplasma cysts have been linked to behavior changes and neurological disorders like schizophrenia. They can also reactivate when the immune system is weakened, causing life-threatening organ damage. While drugs are available to put toxoplasmosis into remission, there is no way to clear the infection. A better understanding of how the parasite develops into cysts would help scientists find a cure.

Through years of collaborative work, IU School of Medicine professors , and , have shown that Toxoplasma forms cysts by altering which proteins are made. Proteins govern the fate of cells and are encoded by mRNAs.

"But mRNAs can be present in cells without being made into protein," Sullivan said. "We've shown that Toxoplasma switches which mRNAs are made into protein when converting into cysts."

Lead author , a postdoctoral fellow at the IU School of Medicine and a member of , examined the so-called leader sequences of genes named BFD1 and BFD2, both of which are necessary for Toxoplasma to form cysts.

"mRNAs not only encode for protein, but they begin with a leader sequence that contains information on when that mRNA should be made into protein," Dey said.

All mRNAs have a structure called a cap at the beginning of their leader sequence. Ribosomes, which convert mRNA into protein, bind to the cap and scan the leader until it finds the right code to begin making the protein.

"What we found was that, during cyst formation, BFD2 is made into protein after ribosomes bind the cap and scan the leader, as expected," Dey said. "But BFD1 does not follow that convention. Its production does not rely on the mRNA cap like most other mRNAs."

The team further showed that BFD1 is made into protein only after BFD2 binds specific sites in the BFD1 mRNA leader sequence.

Sullivan said this is a phenomenon called cap-independent translation, which is more commonly seen in viruses.

"Finding it in a microbe that has cellular anatomy like our own was surprising," Sullivan said. "It speaks to how old this system of protein production is in cellular evolution. We're also excited because the players involved do not exist in human cells, which makes them good potential drug targets."

The Journal of Biological Chemistry featured the new study as an Editor's Pick, which represent a select group of the journal’s publications judged to be of exceptionally high quality and broad general interest to their readership.

This article is republished from the . Read the original .

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Indiana University School of Medicine Staff
Indiana University School of Medicine Staff

This article was written by members of the Indiana University School of Medicine communications office staff.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Parsing plant pigment pathways
Webinar

Parsing plant pigment pathways

June 13, 2025

Erich Grotewold of Michigan State University, an ASBMB Breakthroughs speaker, discusses his work on the genetic regulation of flavonoid biosynthesis.

Calcium channel linked to cancer drug resistance
Journal News

Calcium channel linked to cancer drug resistance

June 12, 2025

Researchers discover a protein associated with carboplatin-resistant retinoblastoma, suggesting this protein could be a promising therapeutic target. Read more about this recent Journal of Biological Chemistry paper.

Host fatty acids enhance dengue virus infectivity
Journal News

Host fatty acids enhance dengue virus infectivity

June 12, 2025

Researchers in Germany find that viral replication depends on host enzymes that synthesize lipids, revealing potential metabolic targets for antiviral intervention. Read more about this recent Journal of Biological Chemistry paper.

Antibodies inhibit hyperactive protein disposal
Journal News

Antibodies inhibit hyperactive protein disposal

June 12, 2025

Researchers at the University of California, San Francisco, identify an enzyme inhibitor, offering new tools to study diseases like cystic fibrosis, neurodegeneration and cancer. Read more about this recent Journal of Biological Chemistry paper.

Scientists find unexpected correlation between age and HDL-C levels
Journal News

Scientists find unexpected correlation between age and HDL-C levels

June 3, 2025

In a 30-year multicenter study, researchers determined what factors predict HDL-C concentration. In their analysis, they found that HDL-C levels grew with increasing age and physical activity.

Butter, olive oil, coconut oil — what to choose?
Journal News

Butter, olive oil, coconut oil — what to choose?

May 28, 2025

Depending on the chain length and origin of the fat, regular fat consumption changes the specific makeup of fats in bloodstream and affect mild to severe cholesterol patterns. Read about this recent Journal of Lipid Research study.