Does a protein hold the key to Alzheimer’s?
Alzheimer’s disease, or AD, is the best-known neurodegenerative disorder affecting cognitive functioning and accounts for 60% to 80% of dementia cases. Understanding the progression of AD is relevant for its treatment, and multiple hypotheses exist to explain how the disease progresses.
One of these is the tau hypothesis; tau is a protein that stabilizes microtubules, an important component in neurons. Misfolding of tau leads to its aggregation in cells. This accumulation of tau starts spreading throughout the brain of AD patients by moving from cell to cell.

In a recent published in the Journal of Biological Chemistry, Joanna Cooper at the University of Maryland School of Medicine, Aurelien Lathuiliere at Massachusetts General Hospital and a team of researchers focused on a receptor called Sortilin-related receptor 1, or SORL1, that is involved in tau accumulation inside the cells.
“SORL1 has been associated with Alzheimer’s disease in a sense that mutations have been found that may be causative, but there is no consensus as to how that is working,” Cooper said. “Most research previously has focused on its role with amyloid beta, which is the other main player in Alzheimer’s disease.”
Prior research showed that lower levels of SORL1 increase the generation of a polypeptide called amyloid beta, the main component of amyloid plaque found in AD patients. This new research indicates SORL1 increases tau seeding, highlighting a contradiction in the role of SORL1 in AD progression.
“I think it’s a new line of research with the potential to have translational implications for patients,” Lathuiliere said.
With amyloid beta, loss of function of SORL1 is problematic, whereas in the context of tau there might also be a gain of toxic function, Cooper explained. “That adds a whole dichotomy into thinking about what SORL1 does,” she said.
Researchers need to do more work in the lab to determine if SORL1 is a therapeutically relevant target for AD patients.
“It was really easy to identify that it acts as a direct binding partner to tau,” Cooper said. That simple experiment quickly gave conclusive results.
“It was a lot more challenging to dig into what can SORL1 do and try to understand something that gives us insight it’s actual physiological function.”
The team used surface plasmon resonance to detect the binding affinity of SORL1 with tau. They conducted immunofluorescence staining and Förster resonance energy transfer assays to understand where tau was positioned among cells and to understand the implication of specific SORL1 mutations in AD patients.
Even if SORL1 isn’t targeted directly for therapeutics, this finding “provides context for the machinery that is helping to traffic tau and opens up a lot more understanding about how that process happens,” Cooper said.
Overall, tau seeding causes AD to progress. Understanding where tau is within and among cells and the receptors responsible for cellular uptake and transport will help researchers explore avenues for treating AD.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Parsing plant pigment pathways
Erich Grotewold of Michigan State University, an ASBMB Breakthroughs speaker, discusses his work on the genetic regulation of flavonoid biosynthesis.

Calcium channel linked to cancer drug resistance
Researchers discover a protein associated with carboplatin-resistant retinoblastoma, suggesting this protein could be a promising therapeutic target. Read more about this recent Journal of Biological Chemistry paper.

Host fatty acids enhance dengue virus infectivity
Researchers in Germany find that viral replication depends on host enzymes that synthesize lipids, revealing potential metabolic targets for antiviral intervention. Read more about this recent Journal of Biological Chemistry paper.

Antibodies inhibit hyperactive protein disposal
Researchers at the University of California, San Francisco, identify an enzyme inhibitor, offering new tools to study diseases like cystic fibrosis, neurodegeneration and cancer. Read more about this recent Journal of Biological Chemistry paper.

Scientists find unexpected correlation between age and HDL-C levels
In a 30-year multicenter study, researchers determined what factors predict HDL-C concentration. In their analysis, they found that HDL-C levels grew with increasing age and physical activity.

Butter, olive oil, coconut oil — what to choose?
Depending on the chain length and origin of the fat, regular fat consumption changes the specific makeup of fats in bloodstream and affect mild to severe cholesterol patterns. Read about this recent Journal of Lipid Research study.