精品国产一区二区桃色

Feature

David McKemy and the cold receptor

Nobelist鈥檚 postdoc searches for a receptor for mint and cold
Laurel Oldach
Jan. 26, 2022

The 2021 Nobel Prize in physiology or medicine was awarded to David Julius and Ardem Patapoutian for their discoveries of receptors that sense temperature and pressure, work that exemplifies how difficult research can be. Through hundreds of mice, tens of thousands of cells and millions of bacterial colonies, the research groups that made the winning discoveries persisted in asking important questions about how the brain detects its surroundings.

Researchers in Julius’ and Patapoutian’s labs who made key discoveries at the bench worked through many technical problems and disappointments in pursuit of the molecules behind sensation. “The Secret History of Touch” tells five stories of their persistence. Here is the third.


A schematic from the Nobel committee illustrates the anatomy of heat and touch sensation. TRPV1 is expressed in heat-sensitive neurons, and Piezo2 in pressure-sensitive Merkel cells that synapse with neurons. Both types of neuron transmit signals from the skin through the dorsal root ganglion, or DRG, to the spinal cord. From there, the sensory signals are passed on to the brain.

Another 5,000 colonies

Research in David Julius’ lab found that capsaicin, a molecule the body registers as hot, was sensed by a protein that also responds to high temperatures. It followed that a compound that feels cool, such as menthol, a molecule from mint, might bind to a cold-sensing protein.

When David Julius asked postdoc David McKemy whether he would be interested in taking on a hunt for the menthol receptor, even though he knew it would be competitive, McKemy was game. “It was a risky project, but that’s what had been successful in the Julius lab,” he explained.

David McKemy
David McKemy

Conceptually, McKemy’s project was very similar to what Michael Caterina had done a few years prior. He planned to express in a cultured cell line a library of genes that he knew were expressed in neurons that innervate the skin, and use a fluorescent calcium sensor to pick out the cells that responded to menthol. He hoped that by zeroing in on the genes expressed in the sensitive cells, he would find the gene that governed a response to menthol.

However, based on intuitions from years of thinking about molecules, McKemy said, “Everyone really thought that cold was inhibiting things. Cold wasn’t going to actually activate something.”

And at first, it seemed as if everyone might be right. After months of screening in an expression library from dorsal root ganglion or DRG neurons, which innervate most of the skin, he did not locate the menthol receptor.

“I remember Dave McKemy picking colonies and then getting frustrated,” Julius recalled. “I said, ‘OK, let’s get your pools out of the autoclave bag … and let’s go back and pick another 5,000 colonies.’ This is the nature of doing bench work. We all go through those periods when stuff’s not working, and that’s when you have to work hardest, I guess.”

Julius said he helps trainees cope with the long slog through a combination of reminding them why the work was worth doing in the first place and finding practical ways to get past the failed experiments (see “Motivation to persist”).

David McKemy/Wikimedia
A figure that Dave McKemy published in 2005 shows how the channel TRPM8, which he discovered, recognizes cool temperatures and menthol (left). It also shows a single neuron expressing two TRP channels with different sensitivities, raising questions about how the brain interprets a signal from such a cell.

“When I was a student, when things weren’t working, I would get re-energized to go back into lab and try something if I could think of one reason why something may not work,” Julius said, “or if I could think of another way to do something and give it a shot.”

In McKemy’s case, that different approach was to use a new set of neurons. Neurons from the DRG respond to heterogeneous stimuli. There are many fewer that fire in response to menthol than to capsaicin. So McKemy looked instead at genes expressed in a more cold-sensitive group of neurons, those that innervate the head, which are called trigeminal. McKemy made another cDNA library and started again. In that library, at last, he found an ion channel that responded to menthol — and also cold.

“ was, I think, two and a half years of research,” McKemy said. “And I think over two years of that is two sentences in the paper.”

By the time he found the menthol receptor, McKemy knew that he had to work fast: Others were searching for it too. , who had discovered the TRPV1 receptor and who by this time had started his own laboratory, said, “There is such a thing as that window of time when the next question is just sitting there and waiting to be asked. … It can be a bit of a race.”

Caterina’s group was part of the race for the menthol receptor. So was , just a day after McKemy’s paper came out, identifying the same receptor with an opposite approach. Instead of screening for a ligand-binding activity and then sequencing the protein responsible for it, they used bioinformatics techniques to search out new TRP channels and then investigated what those proteins might detect.

McKemy said, “The fact that both labs found the same thing using two independent methods? You’re pretty confident everything is right when that happens.

“This is a field of a lot of failure. There are the things that work out, and when they work, it’s great. But there’s a lot of things that go into getting there, the controls and so forth, before you actually get to the big result.”

A happy accident

Laureates were once trainees themselves. When David Julius was a second-year graduate student at the University of California, Berkeley, his first mentor left the university, shutting down her lab.

“That’s how I first initially met him; he was an escapee and desperate, a waif and a stray, looking for a congenial home,” , an emeritus professor at Berkeley and Julius’ co-mentor, recalled drolly. “It was to my very great advantage that he decided that I was someone he could work with and learn from.”

Co-mentored by Thorner and fellow Berkeley professor , working on how haploid yeast can have and communicate a mating type, Julius identified a protease involved in yeast hormone maturation that proved to have homologs in human cells that regulate the production of insulin and other hormones.

“I was very fortunate actually, in the end, that that whole thing happened,” Julius said. He recalls himself as naive and then lucky; the collaboration, put together for administrative reasons, turned out to give him excellent guidance for the project he wanted to work on.

In Thorner’s lab, Julius also met Tony Brake, a postdoc who took a job in industry but later returned to academia as a research scientist in Julius’ lab.

“A lot of the early cloning work from David’s lab came from putting the band back together,” Thorner said. As a mentor, he added, “It’s all very satisfying.”

 

The Secret History of Touch Series

Michael Caterina and the capsaicin receptor

How the Julius lab found that an ion channel senses heat
Makoto Tominaga, Toby Rosen and TRPV1 heat sensation

Nobelist’s postdoc searches for a receptor for mint and cold

Patapoutian’s postdoc unearths the powerful Piezo gene
Bertrand Coste and the pressure receptor

Nobelist’s lab pins down pressure sensing in mice
Seung Hyun Woo, Sanjeev Ranade and Piezo2 in the sense of touch

 

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Laurel Oldach

Laurel Oldach is a former science writer for the ASBMB.

Get the latest from ASBMB Today

Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Understanding the roles of extracellular matrix and vesicles in valvular disease
Profile

Understanding the roles of extracellular matrix and vesicles in valvular disease

Oct. 30, 2025

MOSAIC scholar Cassandra Clift uses mass spectrometry and multiomics to study cardiovascular calcification and collagen dysregulation, bridging her background in bioengineering and biology to investigate extracellular vesicles and heart disease.

Lipid profiles reveal sex differences in type 2 diabetes
Journal News

Lipid profiles reveal sex differences in type 2 diabetes

Oct. 29, 2025

Researchers explored the lipid profiles of individuals with type 2 diabetes and identified potentially useful lipid biomarkers for this condition.

Serum lipids may predict early diabetes risk
Journal News

Serum lipids may predict early diabetes risk

Oct. 29, 2025

Researchers found that levels of two key fatty acids may predict worsening tolerance for glucose, independent of body fat and insulin levels. In turn, these fatty acids may serve as early T2D biomarkers.

Sex and diet shape fat tissue lipid profiles in obesity
Journal News

Sex and diet shape fat tissue lipid profiles in obesity

Oct. 29, 2025

Researchers found that sex hormone levels and diet both influence inflammation and lipid composition in obesity.

Mapping the placenta鈥檚 hormone network
Journal News

Mapping the placenta鈥檚 hormone network

Oct. 21, 2025

Study uncovers how the placenta actively metabolizes not only glucocorticoids but also novel androgens and progesterones, reshaping our understanding of pregnancy and its complications.

Biochemists and molecular biologists sweep major 2025 honors
News

Biochemists and molecular biologists sweep major 2025 honors

Oct. 20, 2025

Recent Nobel, MacArthur and Kimberly Prize honorees highlight the power of biochemistry and molecular biology to drive discovery, including immune tolerance, vaccine design and metabolic disease, and to advance medicine and improve human health.