What’s new with DNA and RNA?
Eukaryotic gene expression is regulated at multiple layers. This session will cover emerging new mechanisms of gene expression regulation, centered around DNA and RNA. We will hear updates on regulation at the nucleosome structure and chromatin conformation level, how noncoding RNAs could impact transcription, and RNA modifications in post-transcriptional gene expression regulation. This session also will introduce diverse modern imaging technologies to visualize transcription activity and spatial transcriptome.
Keywords: chromatin structure, noncoding RNA, RNA modifications, super-resolution imaging, spatial transcriptome
Who should attend: students, postdocs and anyone interested in gene expression regulation, nucleosome structure and chromatin conformation, noncoding RNA and RNA modifications, super-resolution imaging and spatial transcriptome
Theme song: "The DNA Song" by Jam Campus (parody of "Trap Queen" by Fetty Wap)
This session is powered by nucleic acids.
Talks
- Cracking the nucleus: Finding order in chaos — Clodagh O'Shea, Salk Institute
- EM structures of nucleosomes with chaperones — Karolin Luger, University of Colorado Boulder
- Structural mechanism of human telomerase holoenzyme — Kelly Nguyen, Medical Research Council Laboratory of Molecular Biology
- Studying DNA-related processes on DNA curtains — Ilya Finkelstein, University of Texas at Austin
- m6A in the action of regulating the regulators — Kathy (Fange) Liu, University of Pennsylvania
- Jeannie Lee, Massachusetts General Hospital
- RNA methylation multitasking on chromatin — Blerta Xhemalce, University of Texas at Austin
- RNA methylation in gene expression regulation — Chuan He, University of Pennsylvania
- Visualizing RNA in life cells — Timothy Stasevich, Colorado State University
- Visualizing the dynamic genome during development, Alistair Boettiger, Stanford University
- 3D in situ RNA sequencing — Xiao Wang, Broad Institute and Massachusetts Institute of Technology
- Engineering the repetitive 3D genome in human disease— Jennifer Phillips–Cremins, University of Pennsylvania
Learn more
Check out all ten thematic symposia planned for the 2022 ASBMB annual meeting:
- Diversity, equity and inclusion
- Protein machines and disorder
- Signaling
- Quality control in organelles
- Metabolism
- Enzymology
- RNA/DNA
- Membranes/lipids
- Glycobiology
- Education and professional development
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreFeatured jobs
from the
Get the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Early lipid changes drive retinal degeneration in Zellweger spectrum disorder
Lipid profiling in a rare disease mouse model reveals metabolic shifts and inflammation in the retinal pigment epithelium — offering promising biomarker leads to combat blindness.

How sugars shape Marfan syndrome
Research from the University of Georgia shows that Marfan syndrome–associated fibrillin-1 mutations disrupt O glycosylation, revealing unexpected changes that may alter the protein's function in the extracellular matrix.

What’s in a diagnosis?
When Jessica Foglio’s son Ben was first diagnosed with cerebral palsy, the label didn’t feel right. Whole exome sequencing revealed a rare disorder called Salla disease. Now Jessica is building community and driving research for answers.

Peer through a window to the future of science
Aaron Hoskins of the University of Wisconsin–Madison and Sandra Gabelli of Merck, co-chairs of the 2026 ASBMB annual meeting, to be held March 7–10, explain how this gathering will inspire new ideas and drive progress in molecular life sciences.

Glow-based assay sheds light on disease-causing mutations
University of Michigan researchers create a way to screen protein structure changes caused by mutations that may lead to new rare disease therapeutics.

How signals shape DNA via gene regulation
A new chromatin isolation technique reveals how signaling pathways reshape DNA-bound proteins, offering insight into potential targets for precision therapies. Read more about this recent ¾«Æ·¹ú²úÒ»Çø¶þÇøÌÒÉ« paper.